Nature Chemical Biology paper about LDHA alternative substrate utilization at low pH is out!

At low pH, such as under anoxic conditions relevant to diseases like cancer, some metabolic enzymes like LDHA can shift their substrate preferences and cause the accumulation of metabolites that lock the cell into pathogenic states. The mystery of how and why these enzymes start to prefer alternative substrates has lingered.

In a paper from the Thompson laboratory at MSKCC just published in Nature Chemical Biology, graduate student Ariën S. ("Bas") Rustenburg in the lab, together with collaborators from the Gunner lab at CCNY, used modeling to show how protonation state effects explain why substrates like alpha-ketoglutarate that position a carboxylate tail proximal to LDHA's Q100 greatly increase turnover rates at low pH.

L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH.
Andrew M. Intlekofer, Bo Huang, Hui Liu, Hardik Shah, Carlos Carmona-Fontaine, Ariën S. Rustenburg, Salah Salah, M R Gunner, John D. Chodera, Justin R. Cross, and Craig B. Thompson.
Nature Chemical Biology, in press. [DOI] [GitHub]

New Nature Chemical Biology paper on Aurora A kinase, a potential melanoma target

In collaboration with the Nicholas Levinson lab at the University of Minnesota, we have just published a paper in Nature Chemical Biology using experiment and simulation to probe the mechanism of allosteric activation of Aurora A kinase (AurA). AurA is found to be hyperphosphorylated in approximately 10% of melanoma patients due to mutations that deactivate the protein phosphatase PP6, leading to defects in chromosome segregation and genomic stability. 

AurA kinase plays two distinct roles in mitosis, with a centrosomal pool of kinase activated by phosphorylation similarly to other kinases, but a separate pool controlled by a more exotic mechanism of binding to the spindle-associated protein Tpx2. Using an aggregate of several microseconds of data generated on Folding@home to study wild-type AurA and some engineered mutants, we helped the Levinson lab puzzle out a key role of highly stable waters localized in the active site that mediate allosteric communication in the Tpx2-mediated activation of AurA.

Soreen Cyphers, Emily F Ruff, Julie M Behr, John D Chodera, and Nicholas M Levinson.
A water-mediated allosteric network governs activation of Aurora kinase A
Nature Chemical Biology, in press. [DOI] [GitHub]

We have made all the explicit-solvent Folding@home simulation data and analysis scripts used in this paper available for download:

The trajectory data itself is too large to share via GitHub, so we make it available via the Open Science Framework.