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WE'RE BUILDING TOOLS TO ENABLE  
AUTONOMOUS MOLECULAR DESIGN

Target Product Profile (TPP) for oral SARS-CoV-2 main viral protease (Mpro) inhibitor
Property Target range Rationale
protease assay IC50 < 10 nM Extrapolation from other anti-viral programs
viral replication assay EC50 < 5 µM Suppression of virus at achievable blood levels
plaque reduction assay EC50 < 5 µM Suppression of virus at achievable blood levels
route of administration oral bid/tid - compromise PK for potency if pharmacodynamic effect achieved
solubility
 > 5 mg/mL
 Aim for biopharmaceutical class 1 assuming <= 750 mg dose

half-life > 8 h (human) est from rat and dog Assume PK/PD requires continuous cover over plaque inhibition for 24 h max bid dosing

safety

Only reversible and monitorable toxicities  
No significant DDI - clean in 5 CYP450 isoforms 
hERG and NaV1.5 IC50 > 50 µM 
No significant change in QTc 
Ames negative 
No mutagenicity or teratogenicity risk

No significant toxicological delays to development

DDI aims to deal with co-morbidities / therapies,  
cardiac safety for COVID-19 risk profile 
cardiac safety for COVID-19 risk profile 
Low carcinogenicity risk reduces delays in manufacturing  
Patient group will include significant proportion of women of childbearing age

Ed Griffen  
Medchemica
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drug discovery involves  
complex design objectives
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to get there, drug design involves making a lot of decisions 
about which molecules to make and assays to run

Does it inhibit the target? How does it bind?
Does it work in cells?
Does it have a chance of working in humans?

Does it kill the virus in cells?

Could it cause bad side effects?

Can oral dosing deliver sufficient drug? 
Does it actually work against the disease?

assay purpose



autonomous reasoning engines require 
models that can learn

PROPOSE 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the last decade has produced an enormous 
number of biomolecular structures
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biomolecular simulations can predict useful properties 
like binding affinities, but they can’t learn from data

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011 
Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

…or can they?

typical molecular mechanics force field
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How are forcefields made?



How are forcefields made?
experimental data 

quantum chemistry 
keen chemical intuition

a parameter set we 
desperately hope someone 

actually uses

heroic effort by graduate 
students and postdocs



force field construction 
traditionally requires heroic effort

proteins  
post-translational modifications

small molecules 

nucleic acids 

lipids

carbohydrates

water 
ions

Amber20 recommendations
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Quickly adds up to >100 human-years  

Intended to be compatible, but not co-parameterized  
Significant effort is required to extend to new areas  
(e.g. covalent inhibitors, bio-inspired polymers, etc.)  
Nobody is going to want to refit this based on some new data 

How can we bring this problem into the modern era? 
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the open force field initiative aims to build a 
modern infrastructure for force field science

Open source Python Toolkit: use the parameters in most simulation packages

Open curated QM / physical property datasets: build your own force fields

Open source infrastructure: for improving force fields with in-house data

Open science: everything we do is free, permissively licensed, and online

h!p://openforcefield.org 
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fundamentally, force field parameterizastion is hard because  
it’s a mixed discrete-continuous optimization problem

input molecular graph

aspirin
JOSH FASS
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How elaborate should we go? 
* How many distinct atom types are justified?

* How complex should their definitions be?
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Figure 2. Graph nets can reproduce legacy atom types with high accuracy (overall accuracy 98.31%98.63%
97.94%). (a) His-

togram of number of discrepancies in molecules within the test dataset; (b) Illustrations of molecules in the test dataset
with highest numbers of discrepancies between graph net-assigned and reference atom types; (c) Distribution of pre-
dicted atom types for each reference atom type; on-diagonal values indicate agreement. The percentages annotated
under x-axis denote the relative abundance within the test dataset. Only the common carbon types are included in the
confusion matrix here; for full confusion matrix across all atom types, see SI Figure 5.

The test set performance is reported in Figure 2—the overall agreement rate between reference legacy230

types and learned types is 98.31%98.63%
97.94%). In general, the model assigns atom types that correspond to the231

reference type more often when the atom type appears more frequently in the training data, whereas the232

discrepancies occur at rare types and types whose de�nitions follow amore sophisticated logic, for instance233

"cc" (inner sp2 carbon in conjugated ring systems) and "cp" (bridge aromatic carbon in biphenyl systems).234

4 Espaloma recovers molecular mechanics parameters and energies with high235

�delity236

Having established that graph nets have the capacity to reproduce legacy atom types, before �tting to a237

quantum mechanics (QM) target, we �rst use Espaloma to �t potential energies and snapshots from an238

atom type-based MM force �eld. In this case, the underlying dynamics of the training data is known and239

is governed by the set of MM parameters. Therefore, apart from evaluating the �tness between reference240

and predicted energies, we also assess howwell does Espaloma recovers MMparameters—with accurately241

predicted parameters we are able to approximate arbitrary forces and energies with high �delity. Moreover,242

the test set performance indicates how well does the model generalize across di�erent chemical species.243

In order to focus on the functional complexity of the MM potentials and limit the scope of chemical di-244

versity, we choose a minimal dataset of small alkanes, ethers, and alcohols with non-aromatic rings from245

AlkEthOH dataset [60], and generate a series of con�guration snapshots using short high-temperature MD.246

We report the test set performance in Table 1.247

The overall RMSE on bond and angle energy is less than 0.5 kcal/mol. Note that, judged by R2 and MAPE,248

the equilibrium length and angle achieved a better performance compared to force constants.249

5 Espaloma can �t QM energies directly to build new MM force �elds250

Finally, we repeat the end-to-end �tting experiment (Section 4) directly using a quantum chemical (QM) tar-251

get used to train MM force �elds—the energies and forces in an Open Force Field [62] optimization dataset252

1.0 in QCArchive [63]. We selected chemical species with more than 1000 snapshots, and randomly choose253

1000 snapshots within each system. The test set performance is reported in Figure 3. Since nonbonded254

terms are generally optimized to �t other condensed-phase properties, we focus here on optimizing va-255
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Graph Inference on MoLEcular Topology
preprint: h!ps://arxiv.org/abs/1909.07903  
code: h!p://github.com/choderalab/gimlet  

Learns electronegativity (ei) and hardness (si) 
subject to fixed charge sum constraint:

none of these methods achieved satisfactory results when used with our model (with no constraint,
RMSE is around 0.280 e.) We instead adopted a trick proposed by Gilson et al. [7] and use our model
to instead predict the first- and second-order derivatives of the potential energy E w.r.t. the atomic
partial charge, which happens to correspond to the electronegativity ei and hardness si of the atom in
its chemical environment.

ei ⌘
@E

@qi
, si ⌘

@E2

@2qi
. (13)

This problem could thus be formulated as follows: we use the graph net to make a prediction of the
electronegativity and hardness, {êi, ŝi}, and the partial charges could be yielded by minimizing the
second-order Taylor expansion of the potential energy contributed by atomic charges:

{q̂i} = argmin
qi

X

i

êiqi +
1

2
ŝiq

2
i , (14)

subject to 12. Fortunately, using Lagrange multipliers, the solution to 14 could be given analytically
by:

q̂i = �eis
�1
i + s�1

i

Q+
P

i eis
�1
iP

j s
�1
j

, (15)

whose Jacobian and Hessian are trivially easy to calculate. As a result, the prediction of {êi, ŝi}
could be optimized end-to-end using backpropagation.

3 Results and Discussion

Element R2 RMSE(e) # Samples
C 0.99320.99330.9930 0.02170.02190.0215 116864
N 0.97970.98050.9789 0.03700.03760.0364 19490
O 0.97130.97250.9700 0.03420.03480.0336 21503
S 0.99350.99420.9928 0.05240.05510.0496 2955
P 0.85820.99430.7265 0.06690.09500.0339 341
F 0.95170.95770.9458 0.01320.01380.0126 1967
Cl 0.77810.80490.7516 0.02530.02700.0236 1215
Br 0.81660.84580.7878 0.02330.02520.0214 572
I 0.28190.6376�0.0178 0.19480.20170.1874 105
H 0.97440.97500.9739 0.01440.01450.0142 134799

Overall 0.99360.99370.9935 0.02230.02250.0221 299811

Figure 1 (Left): Predicted vs true partial charge of atoms in held-out test set color-coded by
element types. A kernel density estimate of the distribution of charges for each element are plotted
on the axes.
Table 1 (Right): R2 and RMSE of the prediction and number of data points in held-out test
set. The 95% confidence interval is also annotated.

We tested our model on a dataset consisting of 350 259 molecules in ChEMBL database, selected
by Bleiziffer et al. [2] The reference charges are also calculated by Bleiziffer et al. [2] using DFT
with dielectric permittivity ✏ = 4. We randomly split the training and test set with 80:20 ratio.
Random search on a limited hyperparameter space was conducted for hyperparameter tuning, with
the hyperparameter set with highest 5-fold cross validation results chosen. On the test set, the error
between the true and predicted value, RMSE ⇡ 0.02 e, is roughly within the difference between
DFT and AM1-BCC calculations, whereas it takes around 0.03 seconds to calculate the charges for a
single molecule, which is approximately 500 times faster than AM1-BCC methods. We therefore
argue that such method has the potential to replace AM1-BCC in calculating the charges for small
molecules for MD simulation. Moreover, within the dataset (where the largest molecule has 63
atoms), we observed no positive correlation between the prediction error and the number of atoms in
the molecule, indicating potential scalability of this model.

4

where de is the hidden dimension of edges and du is the hidden dimension of global attributes. In
propagation stage, the framework we adopted follows a formalism by Battaglia et al,[1] where, in
each round of message passing, the attributes of nodes, edges, and the graph as a whole, v, e, and u
are updated by trainable functions in the following order:

e(t+1)
k = �e

(e(t)k ,
X

i2N e
k

vi,u
(t)
), (edge update) (4)

ē(t+1)
i = ⇢e!v

(E(t+1)
i ), (edge to node aggregate) (5)

v(t+1)
i = �v

(ē(t+1)
i ,v(t)

i ,u(t)
), (node update) (6)

ē(t+1)
= ⇢e!u

(E(t+1)
), (edge to global aggregate) (7)

v̄(t+1)
= ⇢v!u

(V (t)
), (node to global aggregate) (8)

u(t+1)
= �u

(ē(t+1), v̄(t+1),u(t)
), (global update) (9)

where Ei = {ek, k 2 N v
i } is the set of attributes of edges connected to a specific node, E is the set of

attributes of all edges, V is the set of attributes of all nodes, and N v and N e denote the set of indices
of entities connected to a certain node or a certain edge, respectively. �e, �v, and �u are update
functions that take the environment of the an entity as input and update the attribute of the entity,
which could be stateful (Recurrent Neural Networks) or not; ⇢e!v, ⇢e!u, and ⇢v!u are aggregate
functions that aggregate the attributes of multiple entities into an aggregated attribute which shares
the same dimension with each entity. Although in this work, the definition of edges is limited to that
connect exactly two nodes (bonds connecting two atoms), we could expand the notion of edges to
include hyperedges, to connect more than two nodes (angles and torsions).

Finally, after a designated number of rounds of propagation (message passing), in the readout stage,
t = T , a readout function fr that takes the entire trajectory as input summarizes the information and
yields the final output of desired dimensionality,

ŷ = fr
({{v(t), e(t),u(t)}, t = 1, 2, ..., T}). (10)

2.3 Graph Batching

The number of nodes (atoms) in molecule graphs varies greatly and is usually much smaller than,
say, the number of individuals in a social graph. For efficient backpropagation, especially on GPUs,
molecule graphs need to be combined into larger ones, rather than partitioned or padded to the same
size. This could be achieved by concatenating the attribute vectors of graphs and merging their
adjacency matrices of graphs as

eAkl =

8
<

:
({A}j)k� P

m<j
|Vm|,l�

P
m<j

|Vm|,where
P
m<j

|Vm|  k, l <
P

m<j+1
|Vm|;

0, elsewhere.
(11)

After choosing an appropriate batch size, which is the first dimension of eV and eA, we repeat this
process until another addition of small graph into the batch would result in

P
i
|Vi| greater than the

batch size, upon which the adjacency and the concatenated attributes will be padded to the batch size
and another batch will be initialized.

2.4 Determination of atomic partial charges respecting a net charge constraint

One of the challenges in predicting atomic partial charges is to satisfy the constraint that their sum
should equal to the total charge of the molecule:

X

i

q̂i =
X

i

qi = Q, (12)

where Q is the total (net) charge of the molecule, which could be positive, negative, or zero. Naively,
we could either not explicitly encode this constraint and let the model "learn" it, or, as in Bleiziffer et
al. [2], redistribute charge necessary to cancel any "excess charge" evenly to all atoms. Experimentally,
none of these methods achieved satisfactory results when used with our model (with no constraint,

3
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Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph G such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in themodel parameters�NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49

modern optimization frameworks [18–20] and su�cient data, parameter optimization is only possible in50

the continuous parameter space de�ned by these �xed atom types, while the mixed discrete-continuous51

optimization problem—jointly optimizing types and parameters—is intractable.52

Here, we demonstrate a the potential for a continuous alternative to discrete atom typing schemes53

that permits end-to-end di�erentiable optimization of both “typing” and parameter assignment, allowing the54

entire force �eld to be built, extended, and applied using standard machine learning frameworks utilizing55

automatic di�erentiation such as TensorFlow, PyTorch, or JAX (Figure 1). We hypothesize that graph neural56

networks (graph nets) have at least equivalent expressiveness with expert-derived typing rules, with the57

advantage of being able to smoothly interpolate between representations of chemical environments. We58

�rst provide experimental evidence of this hypothesis by showing that, with acceptable errors:59
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Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph G such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in themodel parameters�NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49
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espaloma can learn existing molecular 
mechanics force fields

Test Training
Quantity RMSE MAPE R2 RMSE MAPE R2

Harmonic Bond + Angle Energy (kcal/mol) 0.43920.43920.4392 0.01570.01620.0153 0.99580.99610.9955 0.77260.79580.7496 0.02770.02850.0269 0.99530.99570.9950
Bond Force Constant kr (kcal / (mol * angstrom ** 2)) 35.404850.266018.0387 0.01800.02150.0148 0.86190.96530.7154 57.124064.823549.2791 0.02990.03300.0271 0.73910.80950.6466

Equilibrium Bond Length br (angstrom) 0.01270.02000.0013 0.00150.00210.0011 0.99561.00000.9890 0.01350.01550.0117 0.02990.03300.0270 0.73910.81110.6590
Angle Force Constant k✓ (kcal / (mol * rad ** 2)) 3.79953.96483.6293 0.02760.02900.0264 0.86010.88050.8361 44.413251.420236.3418 0.04640.04920.0436 *0.2451*0.1895*0.2839

Equilibrium Angle Value b✓ (rad) 0.00430.00450.0041 0.00180.00180.0017 0.92020.93350.9018 0.04800.05580.0397 0.00590.00700.0049 0.49020.54110.4420

Table 1. Espaloma recovers MM energies and parameters when �t to MM energies. RMSE, MAPE, and R2 between
reference and predicted MM energies and parameters. Note that MAPE (Mean Absolute Percentage Error) reports a
fraction, rather than a percentage.

Figure 3. Espaloma can be directly optimized against QM energies to produce a new MM force �eld with compa-
rable accuracy to traditional MM force �eld �tting schemes. Overall test set RMSE: 2.85123.67882.0731 kcal/mol, compared
to 3.73654.45593.0209 kcal/mol for OpenFF 1.2.0 Parsley force �eld [17, 61]. Both reference and predicted energy are centered to
have zero mean for each molecule. Each molecule in the dataset is associated with multiple snapshots. In subplot (a),
each dot represents a snapshot, color-coded by themolecule; the snapshots are aggregated to form the kernel density es-
timation plot. In subplots (b) and (c), each vertical line corresponds to amolecule, and the x-value of that line summarizes
the quality of �t between Espaloma and QM reference. In subplot (b), the quality of �t measure is Root-Mean-Squared
Error (RMSE), computed after each record is centered to have zero mean. 4 In subplot (c), the quality of �t measure is
Pearson’s correlation coe�cient.
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Figure 4. Graph nets can be trained to emit implicit solvent model parameters that allow �tting to experimental
hydration free energies within a restricted subset of the FreeSolv database. This �gure reports on the performance
of �tting to experimental hydration free energies on the n = 300 subset of molecules in the FreeSolv database containing
only the elements carbon, hydrogen, and oxygen. Mean ± standard deviation of the training and validation set perfor-
mance across 10-fold cross-validation are depicted as solid lines and shaded bands. A dashed horizontal line indicates
the RMSE between experiment and the FreeSolv reference calculations (in explicit solvent, using GAFF).

Rather than binning atomic environments with similar e�ects on �Gsolv into discrete collections, we pro-301

pose to de�ne a function that directly emits parameters depending on chemical environment—namely a302

graph net.303

Putting these steps together, it is possible express a hydration free energy prediction as a di�erentiable304

function of graph-net parameters using the following procedure:305

1. compute per-atom parameters by applying a graph-net to a molecular graph, reading out node-level306

attributes,307

2. pass these per-atom parameters to an implicit solvent model,308

3. compute vacuumô solvent works wi for a collection of cached con�guration samples xi,309

4. compute a free energy estimate using the vector of works w.310

Once a simulation-based estimator of the desired experimental quantity is expressed as a di�erentiable311

function of graph net parameters, the whole estimator (including the chemical-perception aspects of the312

force �eld) becomes amenable to gradient-based �tting. We demonstrate this in Figure 4, where a graph313

net is trained to emit per-particle parameters for an implicit solvent model to maximize �t to experimental314

values, for a restricted subset of the FreeSolv dataset.315

In a similar way, more sophisticated, lower-variance estimators based on importance-weighting can be316

used to compute free energies and other equilibrium observables—and their derivatives with respect to317

force �eld parameters—assuming access to cached equilibrium samples [74, 75]. We emphasize that any318

estimator of physical properties that exposes derivatives of the estimate with respect to simulation param-319

eters can in principle be used with this approach.320
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n ]2

�2
n

Here, ΔG estimated via one-step free energy perturbation, 
but can easily differentiate properties through MBAR
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AMBER14SB protein force field 
TIP3P; Joung and Cheatham ions

the protocol described here, the user inputs the molecules of interest
(in any supported standard format) into a graphical interface, and the
perturbation pathways are automatically generated by a variant of the
LOMAP mapping algorithm.41 In the LOMAP algorithm, the
maximum common substructure (MCS) between any pair of
compounds is generated and their similarity is measured. Then ligand
pairs with high similarity scores are connected by edges, where each
edge represents one FEP calculation that will be performed between
the two ligands. The perturbation graph topology is also optimized
such that (1) each edge will, if possible, be nested within at least one
closed cycle; and (2) there will be at least one path containing fewer
than five edges between any pair of compounds.
Figure 2a shows the automated FEP workflow for protein−ligand

binding free-energy calculations, and an example mapping of a ligand
series onto a set of pathways is shown in Figure 2b. The 16 separate
calculations shown in Figure 2b can be prepared in approximately 30
min, whereas manual setup without a graphical user interface and
automated mapping protocols would take significantly longer.
Finally, our approach includes an assessment of the reliability of the

calculations, previously a notorious weak point of free-energy methods.
The use of multiple pathways, via a cycle closure analysis, enables
more reasonable sampling error estimates for the calculations.38 The
estimated error provides an approximation of calculation precision,
which is particularly important for the prospective use of the method.
Note that force field errors cannot be addressed by any such approach;
cycle closure analysis error estimates analyze sampling problems only,
that is, they estimate the minimal error in the free-energy results based
on the conformational space sampled in all simulations.

■ RESULTS AND DISCUSSION
Validation on Eight Retrospective Data Sets. We have

tested the FEP/REST methodology described above on a
diverse set of pharmaceutically relevant targets and ligands (see
Table 2). We note that, of the eight data sets reported in the
table, one of them (CDK2) was also used in a previous study

with the OPLS 2005 force field and a manual setup,38 and the
remaining seven data sets were first studied here. Structures of
the individual ligands and the target perturbations used as
starting points for the FEP calculations in each data set, as well
as other methodological details, are given in Supporting
Information. A summary of the performance for all the pairs
of perturbations is also provided in Table 2. The combination
of high correlations with experimental binding affinity for each
system and a low root-mean-square error (RMSE) for all 330
perturbations implies results of sufficient quality to drive
decisions in the hit-to-lead and lead-optimization phases of
drug discovery projects. Table 3 reports a binned error
distribution for all 330 perturbations, indicating a roughly
Gaussian distribution with a standard deviation of 1.1 kcal/mol.

Table 2. Relative Binding Free-Energy Calculation Resultsa

system

BACE CDK2 JNK1 MCL1 p38 PTP1B thrombin Tyk2

no. of compds 36 16 21 42 34 23 11 16
binding affinity range (kcal/mol) 3.5 4.2 3.4 4.2 3.8 5.1 1.7 4.3
crystal structure 4DJW 1H1Q 2GMX 4HW3 3FLY 2QBS 2ZFF 4GIH
series ref 46 47 48 49 50 51 45 52,53
no. of perturbations 58 25 31 71 56 49 16 24
MUE FEP 0.84 ± 0.08 0.91 ± 0.12 0.78 ± 0.12 1.16 ± 0.10 0.80 ± 0.08 0.89 ± 0.12 0.76 ± 0.13 0.75 ± 0.11
RMSE FEP 1.03 ± 0.08 1.11 ± 0.12 1.00 ± 0.15 1.41 ± 0.12 1.03 ± 0.09 1.22 ± 0.17 0.93 ± 0.15 0.93 ± 0.12
avg σcc 0.65 0.57 0.30 0.91 0.76 0.94 0.93 0.46
obs R-value FEP 0.78 ± 0.07 0.48 ± 0.19 0.85 ± 0.07 0.77 ± 0.05 0.65 ± 0.09 0.80 ± 0.08 0.71 ± 0.24 0.89 ± 0.07
P-value FEP 3.9 × 10−5 1.2 × 10−2 7.0 × 10−8 2.2 × 10−7 1.6 × 10−7 7.8 × 10−6 1.1 × 10−2 2.3 × 10−7

obs R-value, MW 0.14 −0.48 −0.39 −0.55 −0.46 −0.84 −0.48 0.00
obs R-value, MM-GB/SA −0.40 −0.53 0.65 0.42 0.66 0.67 0.93 0.79
obs R-value, Glide SP 0.00 −0.56 0.24 0.59 0.14 0.55 0.53 0.79
anticip FEP R-value 0.64 ± 0.09 0.73 ± 0.11 0.64 ± 0.12 0.71 ± 0.07 0.67 ± 0.08 0.79 ± 0.07 0.37 ± 0.26 0.74 ± 0.10
anticip exptl R-value 0.88 ± 0.03 0.92 ± 0.03 0.88 ± 0.04 0.91 ± 0.02 0.89 ± 0.03 0.94 ± 0.02 0.68 ± 0.15 0.92 ± 0.03
aEight different receptors, covering a broad range of protein types, were studied. The number of ligands, experimental binding affinity range of
ligands, crystal structure used in the simulation, original publication reporting the experimental binding affinity, and number of perturbations for each
system are reported. Details about how the data set was selected, and how the experimental binding free energies were obtained, are included in
Supporting Information. Several different metrics to assess the performance of FEP results including mean unsigned error (MUE) and root mean
square error (RMSE) for all perturbations, correlation coefficient (R) between FEP-predicted binding affinities and experimental results, and average
error for predictions calculated by cycle closure algorithm (avg σcc) are also reported. For comparison, MM-GB/SA and Glide SP scoring results are
also reported. The FEP scoring weighted average R-value obtained is 0.75, for MM-GB/SA it is 0.35, and for Glide SP it is 0.29. Expected correlation
coefficient between FEP-predicted binding affinities and experimental results (anticip FEP R-value) and expected correlation coefficient between two
experimental measurements of binding affinities (anticip exptl R-value), with assumed RMSEs of 1.1 and 0.4 kcal/mol for FEP-predicted binding
affinities and experimental data, respectively, are also shown (see details in Supporting Information). Errors for MUE, RMSE, and R values by use of
the bootstrapping method are also reported. Free energies are in units of kilocalories per mole.

Table 3. Error Distribution for All 330 Perturbationsa

absolute error (kcal/mol) anticip % obs %

<0.5 33.9 35.5
<1.0 62.0 63.3
<1.5 81.2 81.5
<2.0 92.1 92.4
<2.5 97.2 96.7
>2.5 2.8 3.3

aThe distribution is approximately Gaussian with some fattening of the
tail of the distribution beyond 2.5 kcal/mol. Fitting of the error
distribution by a Gaussian function with the same RMSE is given in
Supporting Information, Figure S1. Obs % is the percentage of FEP
perturbations found to be accurate within the specified absolute error.
Anticip % is the percentage of FEP perturbations that would be
expected given an underlying root-mean-square error of 1.1 kcal/mol
and an ideal Gaussian error distribution.
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LOMAP mapping algorithm.41 In the LOMAP algorithm, the
maximum common substructure (MCS) between any pair of
compounds is generated and their similarity is measured. Then ligand
pairs with high similarity scores are connected by edges, where each
edge represents one FEP calculation that will be performed between
the two ligands. The perturbation graph topology is also optimized
such that (1) each edge will, if possible, be nested within at least one
closed cycle; and (2) there will be at least one path containing fewer
than five edges between any pair of compounds.
Figure 2a shows the automated FEP workflow for protein−ligand
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min, whereas manual setup without a graphical user interface and
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Finally, our approach includes an assessment of the reliability of the

calculations, previously a notorious weak point of free-energy methods.
The use of multiple pathways, via a cycle closure analysis, enables
more reasonable sampling error estimates for the calculations.38 The
estimated error provides an approximation of calculation precision,
which is particularly important for the prospective use of the method.
Note that force field errors cannot be addressed by any such approach;
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Table 2). We note that, of the eight data sets reported in the
table, one of them (CDK2) was also used in a previous study

with the OPLS 2005 force field and a manual setup,38 and the
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avg σcc 0.65 0.57 0.30 0.91 0.76 0.94 0.93 0.46
obs R-value FEP 0.78 ± 0.07 0.48 ± 0.19 0.85 ± 0.07 0.77 ± 0.05 0.65 ± 0.09 0.80 ± 0.08 0.71 ± 0.24 0.89 ± 0.07
P-value FEP 3.9 × 10−5 1.2 × 10−2 7.0 × 10−8 2.2 × 10−7 1.6 × 10−7 7.8 × 10−6 1.1 × 10−2 2.3 × 10−7

obs R-value, MW 0.14 −0.48 −0.39 −0.55 −0.46 −0.84 −0.48 0.00
obs R-value, MM-GB/SA −0.40 −0.53 0.65 0.42 0.66 0.67 0.93 0.79
obs R-value, Glide SP 0.00 −0.56 0.24 0.59 0.14 0.55 0.53 0.79
anticip FEP R-value 0.64 ± 0.09 0.73 ± 0.11 0.64 ± 0.12 0.71 ± 0.07 0.67 ± 0.08 0.79 ± 0.07 0.37 ± 0.26 0.74 ± 0.10
anticip exptl R-value 0.88 ± 0.03 0.92 ± 0.03 0.88 ± 0.04 0.91 ± 0.02 0.89 ± 0.03 0.94 ± 0.02 0.68 ± 0.15 0.92 ± 0.03
aEight different receptors, covering a broad range of protein types, were studied. The number of ligands, experimental binding affinity range of
ligands, crystal structure used in the simulation, original publication reporting the experimental binding affinity, and number of perturbations for each
system are reported. Details about how the data set was selected, and how the experimental binding free energies were obtained, are included in
Supporting Information. Several different metrics to assess the performance of FEP results including mean unsigned error (MUE) and root mean
square error (RMSE) for all perturbations, correlation coefficient (R) between FEP-predicted binding affinities and experimental results, and average
error for predictions calculated by cycle closure algorithm (avg σcc) are also reported. For comparison, MM-GB/SA and Glide SP scoring results are
also reported. The FEP scoring weighted average R-value obtained is 0.75, for MM-GB/SA it is 0.35, and for Glide SP it is 0.29. Expected correlation
coefficient between FEP-predicted binding affinities and experimental results (anticip FEP R-value) and expected correlation coefficient between two
experimental measurements of binding affinities (anticip exptl R-value), with assumed RMSEs of 1.1 and 0.4 kcal/mol for FEP-predicted binding
affinities and experimental data, respectively, are also shown (see details in Supporting Information). Errors for MUE, RMSE, and R values by use of
the bootstrapping method are also reported. Free energies are in units of kilocalories per mole.

Table 3. Error Distribution for All 330 Perturbationsa

absolute error (kcal/mol) anticip % obs %

<0.5 33.9 35.5
<1.0 62.0 63.3
<1.5 81.2 81.5
<2.0 92.1 92.4
<2.5 97.2 96.7
>2.5 2.8 3.3

aThe distribution is approximately Gaussian with some fattening of the
tail of the distribution beyond 2.5 kcal/mol. Fitting of the error
distribution by a Gaussian function with the same RMSE is given in
Supporting Information, Figure S1. Obs % is the percentage of FEP
perturbations found to be accurate within the specified absolute error.
Anticip % is the percentage of FEP perturbations that would be
expected given an underlying root-mean-square error of 1.1 kcal/mol
and an ideal Gaussian error distribution.

Journal of the American Chemical Society Article

DOI: 10.1021/ja512751q
J. Am. Chem. Soc. 2015, 137, 2695−2703

2698

the protocol described here, the user inputs the molecules of interest
(in any supported standard format) into a graphical interface, and the
perturbation pathways are automatically generated by a variant of the
LOMAP mapping algorithm.41 In the LOMAP algorithm, the
maximum common substructure (MCS) between any pair of
compounds is generated and their similarity is measured. Then ligand
pairs with high similarity scores are connected by edges, where each
edge represents one FEP calculation that will be performed between
the two ligands. The perturbation graph topology is also optimized
such that (1) each edge will, if possible, be nested within at least one
closed cycle; and (2) there will be at least one path containing fewer
than five edges between any pair of compounds.
Figure 2a shows the automated FEP workflow for protein−ligand

binding free-energy calculations, and an example mapping of a ligand
series onto a set of pathways is shown in Figure 2b. The 16 separate
calculations shown in Figure 2b can be prepared in approximately 30
min, whereas manual setup without a graphical user interface and
automated mapping protocols would take significantly longer.
Finally, our approach includes an assessment of the reliability of the

calculations, previously a notorious weak point of free-energy methods.
The use of multiple pathways, via a cycle closure analysis, enables
more reasonable sampling error estimates for the calculations.38 The
estimated error provides an approximation of calculation precision,
which is particularly important for the prospective use of the method.
Note that force field errors cannot be addressed by any such approach;
cycle closure analysis error estimates analyze sampling problems only,
that is, they estimate the minimal error in the free-energy results based
on the conformational space sampled in all simulations.

■ RESULTS AND DISCUSSION
Validation on Eight Retrospective Data Sets. We have

tested the FEP/REST methodology described above on a
diverse set of pharmaceutically relevant targets and ligands (see
Table 2). We note that, of the eight data sets reported in the
table, one of them (CDK2) was also used in a previous study

with the OPLS 2005 force field and a manual setup,38 and the
remaining seven data sets were first studied here. Structures of
the individual ligands and the target perturbations used as
starting points for the FEP calculations in each data set, as well
as other methodological details, are given in Supporting
Information. A summary of the performance for all the pairs
of perturbations is also provided in Table 2. The combination
of high correlations with experimental binding affinity for each
system and a low root-mean-square error (RMSE) for all 330
perturbations implies results of sufficient quality to drive
decisions in the hit-to-lead and lead-optimization phases of
drug discovery projects. Table 3 reports a binned error
distribution for all 330 perturbations, indicating a roughly
Gaussian distribution with a standard deviation of 1.1 kcal/mol.

Table 2. Relative Binding Free-Energy Calculation Resultsa

system
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binding affinity range (kcal/mol) 3.5 4.2 3.4 4.2 3.8 5.1 1.7 4.3
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series ref 46 47 48 49 50 51 45 52,53
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MUE FEP 0.84 ± 0.08 0.91 ± 0.12 0.78 ± 0.12 1.16 ± 0.10 0.80 ± 0.08 0.89 ± 0.12 0.76 ± 0.13 0.75 ± 0.11
RMSE FEP 1.03 ± 0.08 1.11 ± 0.12 1.00 ± 0.15 1.41 ± 0.12 1.03 ± 0.09 1.22 ± 0.17 0.93 ± 0.15 0.93 ± 0.12
avg σcc 0.65 0.57 0.30 0.91 0.76 0.94 0.93 0.46
obs R-value FEP 0.78 ± 0.07 0.48 ± 0.19 0.85 ± 0.07 0.77 ± 0.05 0.65 ± 0.09 0.80 ± 0.08 0.71 ± 0.24 0.89 ± 0.07
P-value FEP 3.9 × 10−5 1.2 × 10−2 7.0 × 10−8 2.2 × 10−7 1.6 × 10−7 7.8 × 10−6 1.1 × 10−2 2.3 × 10−7

obs R-value, MW 0.14 −0.48 −0.39 −0.55 −0.46 −0.84 −0.48 0.00
obs R-value, MM-GB/SA −0.40 −0.53 0.65 0.42 0.66 0.67 0.93 0.79
obs R-value, Glide SP 0.00 −0.56 0.24 0.59 0.14 0.55 0.53 0.79
anticip FEP R-value 0.64 ± 0.09 0.73 ± 0.11 0.64 ± 0.12 0.71 ± 0.07 0.67 ± 0.08 0.79 ± 0.07 0.37 ± 0.26 0.74 ± 0.10
anticip exptl R-value 0.88 ± 0.03 0.92 ± 0.03 0.88 ± 0.04 0.91 ± 0.02 0.89 ± 0.03 0.94 ± 0.02 0.68 ± 0.15 0.92 ± 0.03
aEight different receptors, covering a broad range of protein types, were studied. The number of ligands, experimental binding affinity range of
ligands, crystal structure used in the simulation, original publication reporting the experimental binding affinity, and number of perturbations for each
system are reported. Details about how the data set was selected, and how the experimental binding free energies were obtained, are included in
Supporting Information. Several different metrics to assess the performance of FEP results including mean unsigned error (MUE) and root mean
square error (RMSE) for all perturbations, correlation coefficient (R) between FEP-predicted binding affinities and experimental results, and average
error for predictions calculated by cycle closure algorithm (avg σcc) are also reported. For comparison, MM-GB/SA and Glide SP scoring results are
also reported. The FEP scoring weighted average R-value obtained is 0.75, for MM-GB/SA it is 0.35, and for Glide SP it is 0.29. Expected correlation
coefficient between FEP-predicted binding affinities and experimental results (anticip FEP R-value) and expected correlation coefficient between two
experimental measurements of binding affinities (anticip exptl R-value), with assumed RMSEs of 1.1 and 0.4 kcal/mol for FEP-predicted binding
affinities and experimental data, respectively, are also shown (see details in Supporting Information). Errors for MUE, RMSE, and R values by use of
the bootstrapping method are also reported. Free energies are in units of kilocalories per mole.

Table 3. Error Distribution for All 330 Perturbationsa

absolute error (kcal/mol) anticip % obs %

<0.5 33.9 35.5
<1.0 62.0 63.3
<1.5 81.2 81.5
<2.0 92.1 92.4
<2.5 97.2 96.7
>2.5 2.8 3.3

aThe distribution is approximately Gaussian with some fattening of the
tail of the distribution beyond 2.5 kcal/mol. Fitting of the error
distribution by a Gaussian function with the same RMSE is given in
Supporting Information, Figure S1. Obs % is the percentage of FEP
perturbations found to be accurate within the specified absolute error.
Anticip % is the percentage of FEP perturbations that would be
expected given an underlying root-mean-square error of 1.1 kcal/mol
and an ideal Gaussian error distribution.
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