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Models to steer design-make-test-analyze cycles

can directly impact discovery programs



Structural data is now an abundant 
resource for drug discovery
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AlphaFold2-like methods can generate

structural models for many more targets



We commonly need to make decisions between 
many related synthetically feasible analogues

COVID Moonshot: [Moonshot] [Fragalysis] [Dashboard]

Can we engage S4 from this 5,000-compound virtual synthetic library varying R3?

top compounds from free energy calculations

parent compound

Top free energy calculation compounds and experimental affinity measurements:

http://postera.ai/covid
https://fragalysis.diamond.ac.uk/viewer/react/projects/765/559
https://fah-public-data-covid19-moonshot-sprints.s3.us-east-2.amazonaws.com/dashboards/sprint-5-dimer/sprint-5-dimer-x11498-dimer-neutral/index.html


alchemical free energy calculations have proven to be a 
useful way to exploit structural data to predict affinities

∆Gbind

PLP + L

PøP + ø
restraint imposition discharging steric decoupling noninteracting

Includes all contributions from enthalpy and entropy of binding to a flexible receptor

simulations of alchemical intermediates with attenuated interactions

Pioneering work from many: McCammon, van Gunsteren, Kollman, Jorgensen, Chipot, Roux, Boresch, Fujitani, Pande, Shirts, Swope, Christ, Mobley, Schrödinger, and many more
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Current accuracies are sufficient to accelerate 
discovery, but how can we go further?

Wang et al. (Schrödinger) JACS 137:2695, 2015 
https://doi.org/10.1021/ja512751q 

Reanalysis: http://github.com/jchodera/jacs-dataset-analysis 

∆∆G RMSE ~ 1.4 kcal/mol

for well-behaved*


proteins/chemistries: 
3-5x reduction  

in molecules synthesized∆∆G
∆G

relative absolute

Aldeghi et al. JACS 139:946, 2017. 
https://doi.org/10.1021/jacs.6b11467

*best-case scenarios!

https://doi.org/10.1021/ja512751q
http://github.com/jchodera/jacs-dataset-analysis
https://doi.org/10.1021/jacs.6b11467


Alchemical free energy calculations have a 
broad domain of applicability

driving affinity / potency

optimizing thermostability

Gapsys, Michielssens, Seeliger, and de Groot. Angew Chem 55:7364, 2016

https://doi.org/10.1002/anie.201510054 

driving selectivity

Moraca, Negri, de Olivera, Abel JCIM 2019 
https://doi.org/10.1021/acs.jcim.9b00106 

Aldeghi et al. JACS 139:946, 2017. 
https://doi.org/10.1021/jacs.6b11467

predicting clinical drug resistance/sensitivity
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EGFR L858R

Rec.. Furin-like Rec.. GF_recep_IV Pkinase_Tyr
Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang.  
Communications Biology 1:70, 2018 
https://doi.org/10.1038/s42003-018-0075-x 

Aldeghi, Gapsys, de Groot. ACS Central Science 4:1708, 2018 

https://doi.org/10.1021/acscentsci.8b00717

Schindler, Baumann, Blum et al. JCIM 11:5457, 2020 
https://doi.org/10.1021/acs.jcim.0c00900 


https://doi.org/10.1002/anie.201510054
https://doi.org/10.1021/acs.jcim.9b00106
https://doi.org/10.1021/jacs.6b11467
https://doi.org/10.1038/s42003-018-0075-x
https://doi.org/10.1021/acscentsci.8b00717
https://doi.org/10.1021/acs.jcim.0c00900


partition coefficients (logP, logD) and permeabilities


porin permeation


crystal polymorphs, etc.

structure-enabled ADME/Tox targets


hERG CYP3A4

…AND HOLD THE POTENTIAL FOR Even broader 
applicability as more structural data emerges



free energy calculations (and much of comp chem) 
fundamentally relies on molecular mechanics force fields

Shan, Kim, Eastwood, Dror, Seeliger, Shaw. JACS 133:9181, 2011

Durrant, McCammon. Molecular dynamics simulations and drug discovery. BMC Biology, 2011

typical class I molecular mechanics force field



force fields have traditionally been 
HEROIC products of HUMAN effort

experimental data

quantum chemistry


keen chemical intuition

a parameter set we

desperately hope someone


actually uses

heroic effort by graduate

students and postdocs



proteins 

post-translational modifications

small molecules 

nucleic acids 

lipids

carbohydrates

water

ions

Amber20 recommendations

Quickly adds up to >100 human-years 

Intended to be compatible, but not co-parameterized 
Significant effort is required to extend to new areas  
(e.g. covalent inhibitors, bio-inspired polymers, etc.) 
Nobody is going to want to refit this based on some new data


How can we bring this problem into the modern era? 

force fields have traditionally been 
HEROIC products of HUMAN effort



As drug discovery explores new parts of 
chemical space, how can forcefields keep up?

to discriminate single vs. double p—p bonds in compounds 24
and 25 in Figure 1.

Bond type information (such as bond orders) can be very
helpful in classifying and discriminating among similar chemical
environments. For various reasons, many force fields, including
AMBER, only apply atom type information, and do not separately
name or keep track of bond orders or types. To be consistent with
the existing AMBER force fields and codes, we have used the sets
of identical atom type pairs described above (cc/cd, cp/cq, ce/cf,
etc.) instead of explicit bond orders to discriminate conjugated/
aromatic single and double bonds. It is notable that although our
scheme works for most of the molecules, there are still some
special molecules that cannot be properly handled. We think that
most of the failures happen to conjugated/aromatic rings attached
to large aliphatic rings [10 ! 4n (n " 0, 1, 2) membered rings].
Figure 1(c) lists two examples of the kind of molecules for which
our current scheme would fail. In our experience, such failures are
only rarely encountered, but future extensions of the GAFF force
field will have to consider these sorts of molecules.

We have developed an atom-type perception program, which is
part of the antechamber suite of Amber, to assign the atom types
described here, based only on an input geometry. Details of the
algorithms involved will be presented in a separate article.19

Charges

To accurately fit conformational and nonbonded energies in a
transferable fashion, one should choose consistent charge ap-
proach. The restrained electrostatic potential (RESP)16,20 at HF/6-
31G* is the default charge approach applied in the Amber protein
force fields. Although RESP is expensive compared to empirical
schemes such as Gasteiger charges, it has many desirable features,
and allows one to use fewer torsional terms than might otherwise
be required.8 It has worked well in tests of small molecules21,22 as
well as proteins. This is the default charge scheme in GAFF
parameterization. Unfortunately, the fact that this charge scheme
needs to run ab initio optimization at the HF/6-31G* level has
prevented it from being widely used in handling large numbers of
molecules. In this situation, one may apply an alternative charge
scheme called AM1-BCC (bond charge correction),23,24 which is
much cheaper than HF/6-31G* RESP. The basic idea of AM1-
BCC is to first carry out a semiempirical AM1 calculation to get
Mulliken charges, followed by a bond charge correction scheme to
obtain results that are compatible with RESP charges. We use the
BCC parameters derived by Jakalian et al.,24 which are designed to
make AM1-BCC charges match the electrostatic potential at the
HF/6-31G* level.

Figure 1. Example molecules that elucidate the definitions of atom
types introduced in GAFF. (a) basic atom types; (b) special atom
types; (c) examples of failed molecules that cannot be properly han-
dled with our atom type scheme. In I(b), unmarked aromatic carbon in
No. 11–15 have an atom type of “ca”; in I(c), atom types that causes
failure are marked with bold italic font.
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Wang J, Wolf RM, Caldwell JW, Kollman PA, and Case DA. J Comput Chem 25:1157, 2004.

The Generalized Amber Forcefield (GAFF) only understands this space of chemistries:

GAFF 1 was finished in 1999, still awaiting GAFF 2 completion
Extension to new chemical space is nontrivial

Parameter fitting code was never released

Atom types have introduced numerous errors



Can we make building bimolecular force fields 

as easy as training a machine learning model?

https://www.tensorflow.org/overview

training a neural network
import your tools

grab a standard, curated dataset

define a novel model architecture

declare your objectives in training it
fit it
use it

https://www.tensorflow.org/overview


https://www.tensorflow.org/overview

training a neural network fitting a force field

Can we make building bimolecular force fields 

as easy as training a machine learning model?

https://www.tensorflow.org/overview


  http://openforcefield.org 

http://openforcefield.org
http://openforcefield.org


the open force field initiative aims to build a 
modern infrastructure for force field science

Open source Python Toolkit: use the parameters in most simulation packages

Open curated QM / physical property datasets: build your own force fields

Open source infrastructure: for improving force fields with in-house data

Open science: everything we do is free, permissively licensed, and online

http://openforcefield.org 

MolSSI QCArchive quantum chemical data: http://qcarchive.molssi.org 

http://openforcefield.org
http://qcarchive.molssi.org
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(2016)
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(2015)

smirnoff99Frosst

(2018)

openff 1.0

(2019)

http://github.com/choderalab/perses  dominic Rufa

we’ve made RAPID AND significant progress in accuracy,

But we’re still stick with slow generations

Open Force Field Initiative

“parsley”

http://github.com/choderalab/perses


New generations of machine learning models 
are particularly well-suited to chemistry

Figure adapted from Zhou Z 
arXiv:1706.09916

molecule bond atom

predict 
properties

Graph Inference on MoLEcular Topology
preprint: https://arxiv.org/abs/1909.07903  
code: http://github.com/choderalab/gimlet  

Learns electronegativity (ei) and hardness (si)

subject to fixed charge sum constraint:

none of these methods achieved satisfactory results when used with our model (with no constraint,
RMSE is around 0.280 e.) We instead adopted a trick proposed by Gilson et al. [7] and use our model
to instead predict the first- and second-order derivatives of the potential energy E w.r.t. the atomic
partial charge, which happens to correspond to the electronegativity ei and hardness si of the atom in
its chemical environment.

ei ⌘
@E

@qi
, si ⌘

@E2

@2qi
. (13)

This problem could thus be formulated as follows: we use the graph net to make a prediction of the
electronegativity and hardness, {êi, ŝi}, and the partial charges could be yielded by minimizing the
second-order Taylor expansion of the potential energy contributed by atomic charges:

{q̂i} = argmin
qi

X

i

êiqi +
1

2
ŝiq

2
i , (14)

subject to 12. Fortunately, using Lagrange multipliers, the solution to 14 could be given analytically
by:

q̂i = �eis
�1
i + s�1

i

Q+
P

i eis
�1
iP

j s
�1
j

, (15)

whose Jacobian and Hessian are trivially easy to calculate. As a result, the prediction of {êi, ŝi}
could be optimized end-to-end using backpropagation.

3 Results and Discussion

Element R2 RMSE(e) # Samples
C 0.99320.99330.9930 0.02170.02190.0215 116864
N 0.97970.98050.9789 0.03700.03760.0364 19490
O 0.97130.97250.9700 0.03420.03480.0336 21503
S 0.99350.99420.9928 0.05240.05510.0496 2955
P 0.85820.99430.7265 0.06690.09500.0339 341
F 0.95170.95770.9458 0.01320.01380.0126 1967
Cl 0.77810.80490.7516 0.02530.02700.0236 1215
Br 0.81660.84580.7878 0.02330.02520.0214 572
I 0.28190.6376�0.0178 0.19480.20170.1874 105
H 0.97440.97500.9739 0.01440.01450.0142 134799

Overall 0.99360.99370.9935 0.02230.02250.0221 299811

Figure 1 (Left): Predicted vs true partial charge of atoms in held-out test set color-coded by
element types. A kernel density estimate of the distribution of charges for each element are plotted
on the axes.
Table 1 (Right): R2 and RMSE of the prediction and number of data points in held-out test
set. The 95% confidence interval is also annotated.

We tested our model on a dataset consisting of 350 259 molecules in ChEMBL database, selected
by Bleiziffer et al. [2] The reference charges are also calculated by Bleiziffer et al. [2] using DFT
with dielectric permittivity ✏ = 4. We randomly split the training and test set with 80:20 ratio.
Random search on a limited hyperparameter space was conducted for hyperparameter tuning, with
the hyperparameter set with highest 5-fold cross validation results chosen. On the test set, the error
between the true and predicted value, RMSE ⇡ 0.02 e, is roughly within the difference between
DFT and AM1-BCC calculations, whereas it takes around 0.03 seconds to calculate the charges for a
single molecule, which is approximately 500 times faster than AM1-BCC methods. We therefore
argue that such method has the potential to replace AM1-BCC in calculating the charges for small
molecules for MD simulation. Moreover, within the dataset (where the largest molecule has 63
atoms), we observed no positive correlation between the prediction error and the number of atoms in
the molecule, indicating potential scalability of this model.

4

where de is the hidden dimension of edges and du is the hidden dimension of global attributes. In
propagation stage, the framework we adopted follows a formalism by Battaglia et al,[1] where, in
each round of message passing, the attributes of nodes, edges, and the graph as a whole, v, e, and u
are updated by trainable functions in the following order:

e(t+1)
k = �e

(e(t)k ,
X

i2N e
k

vi,u
(t)
), (edge update) (4)

ē(t+1)
i = ⇢e!v

(E(t+1)
i ), (edge to node aggregate) (5)

v(t+1)
i = �v

(ē(t+1)
i ,v(t)

i ,u(t)
), (node update) (6)

ē(t+1)
= ⇢e!u

(E(t+1)
), (edge to global aggregate) (7)

v̄(t+1)
= ⇢v!u

(V (t)
), (node to global aggregate) (8)

u(t+1)
= �u

(ē(t+1), v̄(t+1),u(t)
), (global update) (9)

where Ei = {ek, k 2 N v
i } is the set of attributes of edges connected to a specific node, E is the set of

attributes of all edges, V is the set of attributes of all nodes, and N v and N e denote the set of indices
of entities connected to a certain node or a certain edge, respectively. �e, �v, and �u are update
functions that take the environment of the an entity as input and update the attribute of the entity,
which could be stateful (Recurrent Neural Networks) or not; ⇢e!v, ⇢e!u, and ⇢v!u are aggregate
functions that aggregate the attributes of multiple entities into an aggregated attribute which shares
the same dimension with each entity. Although in this work, the definition of edges is limited to that
connect exactly two nodes (bonds connecting two atoms), we could expand the notion of edges to
include hyperedges, to connect more than two nodes (angles and torsions).

Finally, after a designated number of rounds of propagation (message passing), in the readout stage,
t = T , a readout function fr that takes the entire trajectory as input summarizes the information and
yields the final output of desired dimensionality,

ŷ = fr
({{v(t), e(t),u(t)}, t = 1, 2, ..., T}). (10)

2.3 Graph Batching

The number of nodes (atoms) in molecule graphs varies greatly and is usually much smaller than,
say, the number of individuals in a social graph. For efficient backpropagation, especially on GPUs,
molecule graphs need to be combined into larger ones, rather than partitioned or padded to the same
size. This could be achieved by concatenating the attribute vectors of graphs and merging their
adjacency matrices of graphs as

eAkl =

8
<

:
({A}j)k� P

m<j
|Vm|,l�

P
m<j

|Vm|,where
P
m<j

|Vm|  k, l <
P

m<j+1
|Vm|;

0, elsewhere.
(11)

After choosing an appropriate batch size, which is the first dimension of eV and eA, we repeat this
process until another addition of small graph into the batch would result in

P
i
|Vi| greater than the

batch size, upon which the adjacency and the concatenated attributes will be padded to the batch size
and another batch will be initialized.

2.4 Determination of atomic partial charges respecting a net charge constraint

One of the challenges in predicting atomic partial charges is to satisfy the constraint that their sum
should equal to the total charge of the molecule:

X

i

q̂i =
X

i

qi = Q, (12)

where Q is the total (net) charge of the molecule, which could be positive, negative, or zero. Naively,
we could either not explicitly encode this constraint and let the model "learn" it, or, as in Bleiziffer et
al. [2], redistribute charge necessary to cancel any "excess charge" evenly to all atoms. Experimentally,
none of these methods achieved satisfactory results when used with our model (with no constraint,

3

YUANQING 
WANG

control experiment: 

direct prediction of charges: RMSE 0.2800 e

https://arxiv.org/abs/1909.07903
http://github.com/choderalab/gimlet


espaloma: extensible surrogate potential of ab initio 
learned and optimized by message-passing algorithm
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Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph G such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in themodel parameters�NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49

modern optimization frameworks [18–20] and su�cient data, parameter optimization is only possible in50

the continuous parameter space de�ned by these �xed atom types, while the mixed discrete-continuous51

optimization problem—jointly optimizing types and parameters—is intractable.52

Here, we demonstrate a the potential for a continuous alternative to discrete atom typing schemes53

that permits end-to-end di�erentiable optimization of both “typing” and parameter assignment, allowing the54

entire force �eld to be built, extended, and applied using standard machine learning frameworks utilizing55

automatic di�erentiation such as TensorFlow, PyTorch, or JAX (Figure 1). We hypothesize that graph neural56

networks (graph nets) have at least equivalent expressiveness with expert-derived typing rules, with the57

advantage of being able to smoothly interpolate between representations of chemical environments. We58

�rst provide experimental evidence of this hypothesis by showing that, with acceptable errors:59
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use of only chemical graph 
means that model can generate 
parameters for small molecules, 
proteins, nucleic acids, covalent 
ligands, carbohydrates, etc.
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Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph G such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in themodel parameters�NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49

modern optimization frameworks [18–20] and su�cient data, parameter optimization is only possible in50

the continuous parameter space de�ned by these �xed atom types, while the mixed discrete-continuous51

optimization problem—jointly optimizing types and parameters—is intractable.52

Here, we demonstrate a the potential for a continuous alternative to discrete atom typing schemes53

that permits end-to-end di�erentiable optimization of both “typing” and parameter assignment, allowing the54

entire force �eld to be built, extended, and applied using standard machine learning frameworks utilizing55

automatic di�erentiation such as TensorFlow, PyTorch, or JAX (Figure 1). We hypothesize that graph neural56

networks (graph nets) have at least equivalent expressiveness with expert-derived typing rules, with the57

advantage of being able to smoothly interpolate between representations of chemical environments. We58

�rst provide experimental evidence of this hypothesis by showing that, with acceptable errors:59
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entire model is end-to-end 
differentiable so can be fit to 
any loss function by standard 
automatic differentiation 
machine learning frameworks 
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Figure 1. End-to-end di�erentiable molecular mechanics parameter assignment. Espaloma (Extendable Surrogate
Potential Optimized by Message-passing Algorithms) is a modular approach for directly computing molecular mechanics
force �eld parameters �FF from a chemical graph G such as a small molecule or biopolymer via a process that is fully dif-
ferentiable in themodel parameters�NN. In Stage 1, a graph net is used to generate continuous latent atom embeddings
describing local chemical environments from the chemical graph. In Stage 2, these atom embeddings are transformed
into feature vectors that preserve appropriate symmetries for atom, bond, angle, and proper/improper torsion inference
via Janossy pooling. In Stage 3, molecular mechanics parameters are directly predicted from these feature vectors us-
ing feed-forward neural nets. This process is performed once per molecular species, allowing the potential energy to
be rapidly computed using standard molecular mechanics implementations thereafter. This approach can be easily ex-
tended to incorporate additional molecular mechanics parameter classes (such as parameters for a charge-equilibration
model [1], point polarizabilities, or valence coupling terms) in a modular manner.

• First, a set of rules are used to classify atoms into atom types that must encode any information about40

the chemical environment that will be used by subsequent steps.41

• Next, bond, angle, and torsion types are determined by the composing atom types.42

• Finally, the parameters attached to atoms, bonds, angles, and torsions are assigned according to a43

table of these parameter classes.44

As a result, atoms, bonds, angles, or torsions with distinct chemical environments that happen to fall45

into the same expert-derived category are forced to share a same set of parameters, potentially leading to46

poor accuracy. Furthermore, the explosion of discrete parameter classes describing equivalent chemical47

environments not only poses signi�cant challenges to extending the space of atom types [17], optimizing48

these independently has the potential to compromise generalizabilty and lead to over�tting. Even with49

modern optimization frameworks [18–20] and su�cient data, parameter optimization is only possible in50

the continuous parameter space de�ned by these �xed atom types, while the mixed discrete-continuous51

optimization problem—jointly optimizing types and parameters—is intractable.52

Here, we demonstrate a the potential for a continuous alternative to discrete atom typing schemes53

that permits end-to-end di�erentiable optimization of both “typing” and parameter assignment, allowing the54

entire force �eld to be built, extended, and applied using standard machine learning frameworks utilizing55

automatic di�erentiation such as TensorFlow, PyTorch, or JAX (Figure 1). We hypothesize that graph neural56

networks (graph nets) have at least equivalent expressiveness with expert-derived typing rules, with the57

advantage of being able to smoothly interpolate between representations of chemical environments. We58

�rst provide experimental evidence of this hypothesis by showing that, with acceptable errors:59
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handling of potential terms: 
charge model parameters,

point polarizabilities,

alternative vdW forms, 
special 1-4 parameters, etc.
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espaloma makes building a new force field easy

http://github.com/choderalab/espaloma

espaloma architecture

(implemented in pytorch)

building a new force field

YUANQING WANG
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Espaloma can learn to reproduce legacy mM force fields

With low rmse error in conformational energies

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

conformer energies force field parameters

reference force field: GAFF 1.81 [https://doi.org/10.1002/jcc.20035]

dataset: PhAlkEthOH [https://dx.doi.org/10.1021/acs.jctc.8b00640]

https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
https://doi.org/10.1002/jcc.20035
https://dx.doi.org/10.1021/acs.jctc.8b00640


espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems
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espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

PhAlkEthOh: Phenyls, Alkanes, Ethers, and alcohols (OH)

(a low-complexity chemical space)

PhAlkEthOH doi: https://dx.doi.org/10.1021/acs.jctc.8b00640

https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
https://dx.doi.org/10.1021/acs.jctc.8b00640


espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

OpenFF Gen2 Optimization set: Diverse druglike fragments challenging for force fields

(a moderate-complexity chemical space)

OpenFF Gen2 QM data doi: https://doi.org/10.1021/acs.jctc.1c00571

https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
https://doi.org/10.1021/acs.jctc.1c00571


espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

VEHICLe: Virtual exploratory heterocyclic drug scaffold library

(aromatic bicyclic heterocyclic compounds containing C, N, O, S, H)

VEHICLe doi: http://doi.org/10.1021/jm801513z 

https://arxiv.org/abs/2010.01196
http://github.com/choderalab/espaloma
http://doi.org/10.1021/jm801513z


espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

Comparison with QCArchive data
initial QM minimized

DFT B3LYP-D3(BJ) / DZVP
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espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma YUANQING WANG

PepConf: Short peptides, including disulfides and cyclic peptides


VEHICLe doi: http://doi.org/10.1021/jm801513z 
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espaloma outperforms current force fields in QM accuracy 
and can be easily trained for heterogeneous systems

preprint: https://arxiv.org/abs/2010.01196 
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Tyk2 from OpenFF benchmark set

espaloma joint model


+ TIP3P water

Tyk2 benchmark doi: https://doi.org/10.1021/ja512751q 

https://arxiv.org/abs/2010.01196
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Espaloma small molecule parameters perform as well or 
better than modern biomolecular force fields

preprint: https://arxiv.org/abs/2010.01196 

code: http://github.com/choderalab/espaloma

free energy calculations with http://github.com/choderalab/perses 
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espaloma can also fit 

experimental free energies
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preprint: https://arxiv.org/abs/2010.01196   
code: https://github.com/choderalab/espaloma 

Figure 4. Graph nets can be trained to emit implicit solvent model parameters that allow �tting to experimental
hydration free energies within a restricted subset of the FreeSolv database. This �gure reports on the performance
of �tting to experimental hydration free energies on the n = 300 subset of molecules in the FreeSolv database containing
only the elements carbon, hydrogen, and oxygen. Mean ± standard deviation of the training and validation set perfor-
mance across 10-fold cross-validation are depicted as solid lines and shaded bands. A dashed horizontal line indicates
the RMSE between experiment and the FreeSolv reference calculations (in explicit solvent, using GAFF).

Rather than binning atomic environments with similar e�ects on �Gsolv into discrete collections, we pro-301

pose to de�ne a function that directly emits parameters depending on chemical environment—namely a302

graph net.303

Putting these steps together, it is possible express a hydration free energy prediction as a di�erentiable304

function of graph-net parameters using the following procedure:305

1. compute per-atom parameters by applying a graph-net to a molecular graph, reading out node-level306

attributes,307

2. pass these per-atom parameters to an implicit solvent model,308

3. compute vacuumô solvent works wi for a collection of cached con�guration samples xi,309

4. compute a free energy estimate using the vector of works w.310

Once a simulation-based estimator of the desired experimental quantity is expressed as a di�erentiable311

function of graph net parameters, the whole estimator (including the chemical-perception aspects of the312

force �eld) becomes amenable to gradient-based �tting. We demonstrate this in Figure 4, where a graph313

net is trained to emit per-particle parameters for an implicit solvent model to maximize �t to experimental314

values, for a restricted subset of the FreeSolv dataset.315

In a similar way, more sophisticated, lower-variance estimators based on importance-weighting can be316

used to compute free energies and other equilibrium observables—and their derivatives with respect to317

force �eld parameters—assuming access to cached equilibrium samples [74, 75]. We emphasize that any318

estimator of physical properties that exposes derivatives of the estimate with respect to simulation param-319

eters can in principle be used with this approach.320
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OBC2 GBSA FreeSolv RMSE

loss function:
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L(�NN ) =
NX

n=1
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Here, ΔG estimated via one-step free energy perturbation,

but can easily differentiate properties through MBAR

https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://github.com/MobleyLab/FreeSolv


a new generation of quantum machine learning (QML) 
potentials provide significantly more flexibility in 

functional form, though at much greater cost

OLEXANDR

ISAYEV

ADRIAN

ROITBERG

Smith, Isayev, Roitberg. Chemical Science 8:3192, 2017. 
http://doi.org/10.1039/c6sc05720a 

ANI family of quantum machine learning (QML) potentials

radial and angular features deep neural network for each atom excellent agreement with DFT

http://xlink.rsc.org/?DOI=c6sc05720a


Hybrid quantum machine learning / molecular mechanics 
(QML/MM) free energy calculations cut error in half

Rufa, Bruce Macdonald, Fass, Wieder, Grinaway, Roitberg, Isayev, and Chodera.
preprint: https://doi.org/10.1101/2020.07.29.227959
code: https://github.com/choderalab/qmlify



Hybrid quantum machine learning / molecular mechanics 
(QML/MM) post-processing can improve accuracy



Hybrid quantum machine learning / molecular mechanics 
(QML/MM) free energy calculations cut error in half



Hybrid quantum machine learning / molecular mechanics 
(QML/MM) post-processing can improve accuracy



computational bottlenecks in current qml 
models can be sped up with custom gpu kernels

atomic

coordinates

 NN

computation

energy/force

accumulation

feature 

computation

We can speed this up with 
OpenMM GPU kernels 


using common pairlists, etc. 
(e.g. for ANI models)

TensorFlow/PyTorch do this 
efficiently, and hardware will 
keep getting better for this step

tensor cores



NNPOps library 
https://github.com/openmm/nnpops

* CUDA/CPU accelerated kernels

* API for inclusion in MD engines

* Ops wrappers for ML frameworks 

(PyTorch, TensorFlow, JAX)

* Community-driven, package agnostic

computational bottlenecks in current qml 
models can be sped up with custom gpu kernels

(~2.5x slower than GPU MD right now, but need 2x smaller timestep)

model distillation will become important in building single models


that are efficient on hardware
paper: https://arxiv.org/abs/2201.08110 
code: https://github.com/openmm/nnpops 

PDB ID # res # heavy atoms
OpenMM  
ns/day 

(4 fs timestep)

TorchANI 
QML/MM ns/day 


(2 fs timestep)

OpenMM 
QML/MM* ns/day

(2 fs timestep)

3BE9 328 48 436 10.4 96.5 / 50.8

2P95 286 50 430 7.93 96.8 / 49.8

1HPO 198 64 547 9.12 101 / 44.6

1AJV 198 75 666 9.19 101 / 40.7

* ANI ensemble size:  1 / 8

https://github.com/openmm/nnpops
https://arxiv.org/abs/2201.08110
https://github.com/openmm/nnpops


We want to make it easy to run 

QML/MM simulations with openmm

https://github.com/openmm/openmm-ml 

https://github.com/openmm/openmm-ml


Potentials are free of singularities, so simple linear alchemical potentials

can robustly compute alchemical free energies

Simple atomic restraints can be used to improve efficiency

by preventing atoms from flying away

JOSH FASS
MARCUS

WIEDER

preprint: https://doi.org/10.1101/2020.10.24.353318  
code: https://github.com/choderalab/neutromeratio 

ANI-2x 

Pure quantum machine learning (QML) potentials can be used 
to compute free energy differences between chemical species

https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio


qml potentials can learn from experimental 
data to improve physical models 

train: 221 tautomer pairs 
validate: 57 tautomer pairs 
test: 72 tautomer pairs

JOSH FASS
MARCUS

WIEDER

preprint: https://doi.org/10.1101/2020.10.24.353318  
code: https://github.com/choderalab/neutromeratio 

physical models are data-efficient: retraining on small number of experimental 
measurements improves accuracy and generalizes well

<latexit sha1_base64="LhjOAuBeDQYBGjgqALG9X9A10ig=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kokoeiwq6LGC/YA2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2l5ZXVtvbBR3Nza3tkt7e03dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8nvjNJ1Sax/LBjBL0I9qXPOSMGiu1OjcoDCW33VLZrbhTkEXi5aQMOWrd0lenF7M0QmmYoFq3PTcxfkaV4UzguNhJNSaUDWkf25ZKGqH2s+m9Y3JslR4JY2VLGjJVf09kNNJ6FAW2M6JmoOe9ifif105NeOlnXCapQclmi8JUEBOTyfOkxxUyI0aWUKa4vZWwAVWUGRtR0Ybgzb+8SBqnFe+84t6flatXeRwFOIQjOAEPLqAKd1CDOjAQ8Ayv8OY8Oi/Ou/Mxa11y8pkD+APn8wdMk497</latexit>

�G

https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio


http://qcarchive.molssi.org

OpenMM and the Open Force Field Initiative 
are working closely with MolSSI to expand the 
QCArchive to support the construction of 
next-generation machine learning force fields

https://github.com/openmm/spice-dataset 

http://qcarchive.molssi.org
https://github.com/openmm/spice-dataset


CAN WE change practice in structure-enabled drug 
discovery by leveraging data we generate?

2021

2025

week 1 week 2

designs/

predictions

synthesis new data
designs/


predictions
synthesis new data

using published force field model using the same published force field model! 
we haven’t learned anything from the data

week 1 week 2

synthesis new data
designs/


predictions

2.0

synthesis

using force field model

built from public + private data

using new model tuned to target 
from first week’s data

build model 2.0!
designs/


predictions

1.0



preprints and code
gimlet: graph convolutional networks for partial charge assignment

preprint: https://arxiv.org/abs/1909.07903  
code: http://github.com/choderalab/gimlet  


espaloma: end-to-end differentiable assignment of force field parameters

preprint: https://arxiv.org/abs/2010.01196   
code: https://github.com/choderalab/espaloma 


qmlify: hybrid QML/MM alchemical free energy calculations for protein-ligand binding

preprint: https://doi.org/10.1101/2020.07.29.227959 
code: https://github.com/choderalab/qmlify


neutromeratio: alchemical free energy calculations with fully QML potentials for tautomer ratio prediction 
preprint: https://doi.org/10.1101/2020.10.24.353318  
code: https://github.com/choderalab/neutromeratio 

https://arxiv.org/abs/1909.07903
http://github.com/choderalab/gimlet
https://arxiv.org/abs/2010.01196
https://github.com/choderalab/espaloma
https://github.com/choderalab/qmlify
https://doi.org/10.1101/2020.10.24.353318
https://github.com/choderalab/neutromeratio


CHODERA LAB

- Scientific Advisor: OpenEye, Foresite Labs 
All funding: http://choderalab.org/funding

http://choderalab.org/funding


mm will move toward potentials that blend 
short-range ml and long-range physics

Unke and Meuwly

https://doi.org/10.1021/acs.jctc.9b00181

PhysNet 4D-HGNNP

Ko, Finkler, Goedecker, and Behler 
https://doi.org/10.1038/s41467-020-20427-2

MD codes need to interoperate with ML frameworks and 
implement optimized ML potentials using common atomic featurizations





alchemical free energy calculations can predict 
selectivities better than affinities

Nature Biotech 26:127, 2008



HOW WELL CAN WE PREDICT SELECTIVITY?
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Steven Albanese

inhibition reinstates apoptosis in cancer cells

essential for S-phase progression



alchemical methods can accurately predict 
binding affinities to individual cdks

Lingle Wang

Schrödinger

FEP+/OPLS3Individual affinities predicted confidently,

but what does this mean for selectivity?

Steven Albanese

statistical error
presumed forcefield error



how much does cancellation of error 
help SELECTIVITY PREDICTION?

CDK2 ERK2

Quantify via the

correlation coefficient 

of the error



different selectivity problems show 
different degrees of cancellation

Lingle Wang

Schrödinger

FEP+/OPLS3

Steven Albanese



Interline will pursue a number of 
selectivity-focused design problems

selective (de)stabilization

of target conformations

target 
(promotes downstream activity)

antitarget 
(inhibits downstream activity)

target 
(complex to be stabilized)

antitarget 
(individual binding partners)

selective (de)stabilization

of complexes



alchemical free energy calculations can predict the impact OF 
MUTATIONS ON LIGAND BINDING or protein-protein interactions

kevin hauser

Schrödinger (NOW AT RUBRYC)Hauser, Negron, Albanese, Ray, Steinbrecher, Abel, Chodera, Wang. Communications Biology 1:70, 2018
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targets during lead optimization25–27,35, to calculate the effect of
point mutation on the binding free energy between the inhibitor
and the kinase receptor (Fig. 1b, c). We compare this approach
against a fast but approximate physical modeling method
implemented in Prime36 (an MM-GBSA approach) in which an
implicit solvent model is used to assess the change in minimized
interaction energy of the ligand with the mutant and wild-type
kinase. We consider whether these methods can predict a ten-fold
reduction in inhibitor affinity (corresponding to a binding free-
energy change of 1.36 kcal mol−1) to assess baseline utility. As a
benchmark, we compile a set of reliable inhibitor ΔpIC50 data for
144 clinically identified mutants of the human kinase Abl, an
important oncology target dysregulated in cancers like chronic
myelogenous leukemia (CML), for which six1 FDA-approved
TKIs are available. While ΔpIC50 can approximate a dissociation
constant ΔKD, other processes contributing to changes in cell
viability might affect IC50 in ways that are not accounted for by a
traditional binding experiment, motivating a quantitative com-
parison between ΔpIC50 and ΔKD. The results of this benchmark
demonstrate the potential for FEP+ to predict the impact that
mutations in Abl kinase have on drug binding, and a classification
accuracy of 889382% (for all statistical metrics reported in this
paper, the 95% confidence intervals (CI) is shown in the form of
xupperlower

! "
), an RMSE of 1:071:260:89 kcal mol−1, and an MUE of

0:790:920:67 kcal mol−1 was achieved.

Results
A benchmark of ΔpIC50s for predicting mutational resistance.
To construct a benchmark evaluation dataset, we compiled a total
of 144 ΔpIC50 measurements of Abl:TKI affinities, summarized in
Table 1 while ensuring all measurements for an individual TKI
were reported in the same study from experiments run under
identical conditions. 131 ΔpIC50 measurements were available
across the six TKIs with available co-crystal structures with wild-
type Abl—26 for axitinib and 21 for bosutinib, dasatinib, imati-
nib, nilotinib, and ponatinib. 13 ΔpIC50 measurements were
available for the two TKIs for which docking was necessary to
generate Abl:TKI structures—7 for erlotinib and 6 for gefitinib.
For added diversity, this set includes TKIs for which Abl is not
the primary target—axitinib, erlotinib, and gefitinib. All muta-
tions in this benchmark dataset have been clinically observed
(Supplementary Table 1). Due to the change in bond topology
required by mutations involving proline, which is not currently
supported by the FEP+ technology for protein residue mutations,

the three mutations H396P (axitinib, gefitinib, erlotinib) were
excluded from our assessment. As single-point mutations were
highly represented in the Memorial Sloan Kettering-Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) study analyzed in Fig. 1a, we excluded double muta-
tions from this work. However, the impact of mutations from
multiple sites can potentially be modeled by sequentially mutating
each site and this will be addressed in future work.
Experimental ΔpIC50 measurements for wild-type and mutant

Abl were converted to ΔΔG in order to make direct comparisons
between physics-based models and experiment. However, com-
putation of experimental uncertainties were required to under-
stand the degree to which differences between predictions and
experimental data were significant. Since experimental error
estimates for measured IC50s were not available for the data in
Table 1, we compared that data to other sources that have
published IC50s for the same mutations in the presence of the
same TKIs (Fig. 2a–c). Cross-comparison of 97 experimentally
measured ΔΔGs derived from cell viability assay IC50 data led to
an estimate of experimental variability of 0:320:360:28 kcal mol−1 root
mean square error (RMSE) that described the expected repeat-
ability of the measurements. Because multiple factors influence
the IC50 aside from direct effects on the binding affinity we also
compared ΔΔGs derived from ΔpIC50s with those derived from
binding affinity measurements (ΔKd) for which data for a set of
27 mutations was available (Fig. 2d). The larger computed RMSE
of 0:811:040:59 kcal mol−1 represents an estimate of the lower bound
of the RMSE to the IC50-derived ΔΔGs that we might hope to
achieve with FEP+ or Prime, which were performed using
non-phosphorylated models, when comparing sample statistics
directly. Comparing 31 mutations for which phosphorylated and
non-phosphorylated ΔKds were available, we found a strong
correlation between the ΔΔGs derived from those data (r= 0.94,
Supplementary Figure 1).

Most mutations do not significantly reduce TKI potency. The
majority of mutations do not lead to resistance by our 10-fold
affinity loss threshold: 86.3% of the co-crystal set (n= 113) and
86.8% of the total set (n= 125). Resistance mutations, which are
likely to result in a failure of therapy, constitute 13.7% of the
co-crystal set (n= 18) and 13.2% of the total set of mutations
(n= 19). The ΔpIC50s for all 144 mutations are summarized in
Supplementary Tables 2–7. Two mutations exceeded the dynamic
range of the assays (IC50 > 10,000 nM); as these two mutations

Table 1 Public ΔpIC50 datasets for 144 Abl kinase mutations and eight TKIs with corresponding wild-type co-crystal structures
used in this study

(kcal mol−1) (kcal mol−1)

TKI Nmut R S PDB |ΔGmax−ΔGmin| Source ΔGWT

Axitinib 26 0 26 4wa9 2.05 52 −8.35
Bosutinib 21 4 17 3ue4 2.79 79 −9.81
Dasatinib 21 5 16 4xey 5.08 79 −11.94
Imatinib 21 5 16 1opj 2.16 79 −9.19
Nilotinib 21 4 17 3cs9 3.88 79 −10.74
Ponatinib 21 0 21 3oxz 1.00 79 −11.70
Subtotal 131 18 113
Erlotinib 7 1 6 Dock to 3ue4 1.73 82 −9.77
Gefitinib 6 0 6 Dock to 3ue4 1.79 82 −8.84
Total 144 19 125

Nmut Total number of mutants for which ΔpIC50 data was available
Number of Resistant, Susceptible mutants using 10-fold affinity change threshold
PDB Source PDB ID, or Dock to 3ue4, which used 3ue4 as the receptor for Glide-SP docking inhibitors without co-crystal structure
ΔGWT Binding free energy of inhibitor to wild-type Abl, as estimated from IC50 data
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical
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Fig. 3 Comparison of experimentally measured binding free-energy changes (ΔΔG) for 131 clinically observed mutations and 6 targeted kinase inhibitors
(TKI). Co-crystal structures are publicly available for wild-type Abl kinase (see Methods) bound to these inhibitors. Top panel: Abl:TKI co-crystal
structures (protein is gray; TKI is green) with positions of point mutations shown as spheres colored from blue (near) to red (far) by relative distance from
the inhibitor. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG compared to experiment. Variability (ellipses) in experimental ΔΔG
(standard error between IC50-derived ΔΔG measurements made by different labs, 0.32 kcal mol−1) and computed ΔΔG (±σ= 0 kcal mol−1 for Prime while
for FEP+ the standard error of the mean from 3 independent runs). Experimental error bars (σexp) are the standard error between ΔpIC50 and ΔKd

measurements, 0.58 kcal mol−1. To better highlight true outliers unlikely to simply result from expected forcefield error, we presume forcefield error

(σFF≈ 0.9 kcal mol−137) also behaves as a random error, and represent the total estimated statistical and forcefield error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FF þ σ2exp=cal

q" #
as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit
of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points
were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For
MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE
that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical
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Fig. 3 Comparison of experimentally measured binding free-energy changes (ΔΔG) for 131 clinically observed mutations and 6 targeted kinase inhibitors
(TKI). Co-crystal structures are publicly available for wild-type Abl kinase (see Methods) bound to these inhibitors. Top panel: Abl:TKI co-crystal
structures (protein is gray; TKI is green) with positions of point mutations shown as spheres colored from blue (near) to red (far) by relative distance from
the inhibitor. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG compared to experiment. Variability (ellipses) in experimental ΔΔG
(standard error between IC50-derived ΔΔG measurements made by different labs, 0.32 kcal mol−1) and computed ΔΔG (±σ= 0 kcal mol−1 for Prime while
for FEP+ the standard error of the mean from 3 independent runs). Experimental error bars (σexp) are the standard error between ΔpIC50 and ΔKd

measurements, 0.58 kcal mol−1. To better highlight true outliers unlikely to simply result from expected forcefield error, we presume forcefield error

(σFF≈ 0.9 kcal mol−137) also behaves as a random error, and represent the total estimated statistical and forcefield error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FF þ σ2exp=cal

q" #
as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit
of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points
were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For
MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE
that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical
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Fig. 3 Comparison of experimentally measured binding free-energy changes (ΔΔG) for 131 clinically observed mutations and 6 targeted kinase inhibitors
(TKI). Co-crystal structures are publicly available for wild-type Abl kinase (see Methods) bound to these inhibitors. Top panel: Abl:TKI co-crystal
structures (protein is gray; TKI is green) with positions of point mutations shown as spheres colored from blue (near) to red (far) by relative distance from
the inhibitor. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG compared to experiment. Variability (ellipses) in experimental ΔΔG
(standard error between IC50-derived ΔΔG measurements made by different labs, 0.32 kcal mol−1) and computed ΔΔG (±σ= 0 kcal mol−1 for Prime while
for FEP+ the standard error of the mean from 3 independent runs). Experimental error bars (σexp) are the standard error between ΔpIC50 and ΔKd

measurements, 0.58 kcal mol−1. To better highlight true outliers unlikely to simply result from expected forcefield error, we presume forcefield error

(σFF≈ 0.9 kcal mol−137) also behaves as a random error, and represent the total estimated statistical and forcefield error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FF þ σ2exp=cal

q" #
as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit
of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points
were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For
MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE
that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical
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Fig. 3 Comparison of experimentally measured binding free-energy changes (ΔΔG) for 131 clinically observed mutations and 6 targeted kinase inhibitors
(TKI). Co-crystal structures are publicly available for wild-type Abl kinase (see Methods) bound to these inhibitors. Top panel: Abl:TKI co-crystal
structures (protein is gray; TKI is green) with positions of point mutations shown as spheres colored from blue (near) to red (far) by relative distance from
the inhibitor. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG compared to experiment. Variability (ellipses) in experimental ΔΔG
(standard error between IC50-derived ΔΔG measurements made by different labs, 0.32 kcal mol−1) and computed ΔΔG (±σ= 0 kcal mol−1 for Prime while
for FEP+ the standard error of the mean from 3 independent runs). Experimental error bars (σexp) are the standard error between ΔpIC50 and ΔKd

measurements, 0.58 kcal mol−1. To better highlight true outliers unlikely to simply result from expected forcefield error, we presume forcefield error

(σFF≈ 0.9 kcal mol−137) also behaves as a random error, and represent the total estimated statistical and forcefield error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FF þ σ2exp=cal

q" #
as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit
of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points
were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For
MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE
that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical

Abl:TKI Co-crystal structures

Abl:axitinib
PDB: 4WA9

Prime FEP+

Bootstrap

Bayesian analysis

Bootstrap

Bayesian analysis

MUE
(kcal mol–1)

MUE
(kcal mol–1)

RMSE
(kcal mol–1)

RMSE
(kcal mol–1)

1.72

0.821.16

*1.40

1.76

1.37
0.96

1.60 0.92
0.680.79

0.74
0.290.50

1.00
0.460.69

0.92
0.860.89
0.94
0.890.91

0.97
0.880.93

0.92
0.810.87

0.99 1.15
0.85

1.24

1.55
2.01

0.74 0.72
0.77

0.73 0.70
0.76

0.72 0.64
0.79

0.75 0.67
0.83

0.50 0.25
0.73

0.57Sensitivity

Specificity

Accuracy
9E

xp
er

im
en

t

Prediction

28

S

S

r

r 9

85

Prediction

S r

E
xp

er
im

en
t

S

r

105

99

8

Sensitivity

Specificity

Accuracy

0.36
0.77

1.11 1.30
0.91

2.00
1.41

0.95
0.69

Prime

6

4

2

0

–2

–4

–6

–6 –4 –2 0 2 4 6

FEP+

Abl:bosutinib
PDB: 3UE4

Abl:dasatinib
PDB: 4XEY

Abl:imatinib
PDB: 1OPJ

Abl:nilotinib
PDB: 3CS9

Abl:ponatinib
PDB: 3OXZ

∆∆
G

pr
im

e 
(k

ca
l m

ol
–1

)

∆∆GExpt. (kcal mol–1)

–6 –4 –2 0 2 4 6

∆∆GExpt. (kcal mol–1)

6

4

2

0

–2

–4

–6

∆∆
G

F
E

P
+ 

(k
ca

l m
ol

–1
)

Fig. 3 Comparison of experimentally measured binding free-energy changes (ΔΔG) for 131 clinically observed mutations and 6 targeted kinase inhibitors
(TKI). Co-crystal structures are publicly available for wild-type Abl kinase (see Methods) bound to these inhibitors. Top panel: Abl:TKI co-crystal
structures (protein is gray; TKI is green) with positions of point mutations shown as spheres colored from blue (near) to red (far) by relative distance from
the inhibitor. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG compared to experiment. Variability (ellipses) in experimental ΔΔG
(standard error between IC50-derived ΔΔG measurements made by different labs, 0.32 kcal mol−1) and computed ΔΔG (±σ= 0 kcal mol−1 for Prime while
for FEP+ the standard error of the mean from 3 independent runs). Experimental error bars (σexp) are the standard error between ΔpIC50 and ΔKd

measurements, 0.58 kcal mol−1. To better highlight true outliers unlikely to simply result from expected forcefield error, we presume forcefield error

(σFF≈ 0.9 kcal mol−137) also behaves as a random error, and represent the total estimated statistical and forcefield error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FF þ σ2exp=cal

q" #
as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit
of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points
were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For
MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE
that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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patient bearing a resistance mutation in the kinase domain of Abl
has an equal chance of Prime correctly predicting this mutation
would be resistant to one of the TKIs considered here, while if
the mutation was susceptible, the chance of correct prediction
would be ~75%. By contrast, the classification specificity of
FEP+ was substantially better. For FEP+, the sensitivity was
0:500:740:29 while the specificity was 0:930:970:88. There is a very high
probability that FEP+ will correctly predict that one of the eight
TKIs studied here will remain effective for a patient bearing a
susceptible mutation.

How reliant are classification results on choice of cutoff? Pre-
vious work by O’Hare et al. utilized TKI-specific thresholds for
dasatinib, imatinib, and nilotinib40, which were ~2 kcal mol−1.

Supplementary Figure 2 shows that when our classification
threshold was increased to a 20-fold change in binding (1.77
kcal mol−1), FEP+ correctly classified 8 of the 13 resistant
mutations and with a threshold of 100-fold change in binding
(2.72 kcal mol−1), FEP+ correctly classified the only two
resistant mutations (T315I/dasatinib and T315I/nilotinib).
With the extant multilayered and multinodal decision-making
algorithms used by experienced oncologists to manage their
patients’ treatment, or by medicinal chemists to propose can-
didate compounds for clinical trials, the resistant or susceptible
cutoffs could be selected with more nuance than the simple
10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which
physical models predict resistance mutations increases
beyond 90% (Supplementary Figure 2). For the alchemical
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Fig. 3 Comparison of experimentally measured binding free-energy changes (ΔΔG) for 131 clinically observed mutations and 6 targeted kinase inhibitors
(TKI). Co-crystal structures are publicly available for wild-type Abl kinase (see Methods) bound to these inhibitors. Top panel: Abl:TKI co-crystal
structures (protein is gray; TKI is green) with positions of point mutations shown as spheres colored from blue (near) to red (far) by relative distance from
the inhibitor. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG compared to experiment. Variability (ellipses) in experimental ΔΔG
(standard error between IC50-derived ΔΔG measurements made by different labs, 0.32 kcal mol−1) and computed ΔΔG (±σ= 0 kcal mol−1 for Prime while
for FEP+ the standard error of the mean from 3 independent runs). Experimental error bars (σexp) are the standard error between ΔpIC50 and ΔKd

measurements, 0.58 kcal mol−1. To better highlight true outliers unlikely to simply result from expected forcefield error, we presume forcefield error

(σFF≈ 0.9 kcal mol−137) also behaves as a random error, and represent the total estimated statistical and forcefield error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2FF þ σ2exp=cal

q" #
as vertical error

bars. The yellow region indicates area in which predicted ΔΔG is within 1.36 kcal mol−1 of experiment. Two mutations were beyond the concentration limit
of the assay and were not plotted; N= 129. Bottom panel: Truth tables and classification results include T315I/dasatinib and L248R/imatinib; 131 points
were used. Truth tables of classification accuracy, sensitivity and specificity using two-classes (resistant: ΔΔG > 1.36 kcal/mol; ΔΔG≤ 1.36 kcal/mol). For
MUE, RMSE, and classification statistics, sub/superscripts denote 95 % CIs. For Prime, *MUE highlights that the Bayesian model yields a value for MUE
that is noticeably larger than MUE for observed data due to the non-Gaussian error distribution of Prime
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