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yank computes  
absolute binding free energies 

to compare directly with experiment
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alchemical free energy calculations provide a 
rigorous way to efficiently compute binding affinities

∆Gbind

PLP + L

PøP + ø
restraint imposition discharging steric decoupling noninteracting

Requires orders of magnitude less effort than simulating direct association process, 
but still includes all enthalpic/entropic contributions to binding free energy.

multiple simulations of alchemical intermediates
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Pioneering work from many: McCammon, van Gunsteren, Kollman, Jorgensen, Chipot, Roux, Boresch, Fujitani, Pande, Shirts, Swope, Christ, Mobley, and many more 
Recent review: Chodera, Mobley, Shirts, Dixon, Branson, Pande. Curr Opin Struct Biol 21:150, 2011. 



Markov chain Monte Carlo (MCMC) framework allows for 
flexible inclusion of enhanced sampling schemes  

and chemical effects

GHMC protonation 
state MC

tautomeric 
state MC

sidechain 
NCMC

other MC...

composite MCMC sampling scheme for one alchemical state

... ... ...

propagation mixing

X
...

state 1

state 2

state 3

state 4

Can be combined with replica exchange schemes to decrease correlation times

chemical effectsconformational 
sampling

enhanced sampling 
schemes



alchemical Replica-exchange with  
Gibbs sampling reduces correlation times

... ... ...

propagation mixing

X
...

state 1

state 2

state 3

state 4

Chodera JD and Shirts MR. JCP 135:194110, 2011

samples from joint equilibrium distribution of all K replicas: ⇡(X,S) /
KY

i=1

⇡si(xi)

Mixing time

(1-λ

Autocorrelation of 
state index variable End-to-end time

Metropolis 95.1 ± 0.2 ps 211 ± 60 ps 508 ± 20 ps

Gibbs 25.8 ± 0.1 ps 67 ± 4 ps 196 ± 6 ps

2.5x speedup!

Xn ⇠ p(X|Sn)

Sn+1 ⇠ p(S|Xn+1)

1. update configurations
2. update permutation of state labels

[expensive molecular dynamics]
[inexpensive Monte Carlo swaps]

Replica exchange can be considered a form of Gibbs sampling:



Markov chain Monte Carlo (MCMC) framework for 
enhanced sampling schemes and chemical effects

GHMC protonation 
state MC

tautomeric 
state MC

sidechain 
NCMC

ligand 
displacement 

...

composite MCMC sampling scheme for one alchemical state

chemical effectsergodic 
conformational 

sampling

enhanced sampling schemes

ligand 
rotation

existing

planned



the Multistate Bennett acceptance ratio (MBAR) 
estimator extracts all information from the data 

- asymptotically optimal estimator for free energy differences from equilibrium data 
- robust estimates of uncertainties 
- combine data from multiple temperatures, pressures, bias potentials 
- freely-available Python implementation installable via conda 
- batteries included: comes with tools to subsample correlated data to extract independent data

http://github.org/choderalab/pymbar
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FREE ENERGIES WITH implicit models of solvent are promising: 
Could PLAY a role in rapid affinity prediction

AMBER ff96 + OBC GBSA (no cutoff) + GAFF/AM1-BCC 
12 h on 2 GPUs
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Fig. 1. The lysozyme L99A binding site. This binding site is a simple, largely
apolar cavity (shown with a surface representation) created by mutating a leucine
(residue 99) into an alanine. It binds a variety of small, often aromatic, molecules,
including benzene, which is shown here, and has been studied extensively both
experimentally and computationally.

ods.

2 Results

2.1 Overview

We first computed binding free energies of a number of compounds with known
binding a⇥nities to the L99A mutant binding site of T4 lysozyme to assess
accuracy of our computed binding free energies. In these retrospective studies,
we uncovered several keys for accuracy in these calculations, and tested several
approximations commonly made in docking. We also applied these methods
prospectively to predict binding a⇥nities and binding orientations for several
molecules.

2.2 Retrospective studies: Comparison with previous experimental results.

To assess the accuracy of our binding free energy methods, we first computed
binding free energies for a test set of 13 small neutral compounds (Table 1).
Of these, binding a⇥nities for 11 were previously measured with isothermal
titration calorimetry23, and two were previously been determined to be non-
binders, with a detection threshold of around 10 mM12,15.

4

T4 lysozyme L99A
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Chodera and Shirts. JCP 135:194110, 2011 
Wang, Chodera, Yang, and Shirts. JCAMD 27:989, 2013. 

http://github.org/choderalab/yank



installing yank

conda	
  install	
  -­‐c	
  http://conda.binstar.org/omnia	
  yank

(Is this simple enough now, Paul?)



#!/bin/bash	
  !
#	
  Set	
  up	
  calculation.	
  
echo	
  "Setting	
  up	
  binding	
  free	
  energy	
  calculation..."	
  
yank	
  prepare	
  binding	
  amber	
  -­‐-­‐setupdir=setup	
  -­‐-­‐ligand="resname	
  MOL"	
  -­‐-­‐store=output	
  -­‐-­‐iterations=1000	
  \	
  
	
  	
  	
  	
  -­‐—nbmethod=CutoffPeriodic	
  -­‐-­‐temperature="300*kelvin"	
  -­‐-­‐pressure="1*atmosphere"	
  -­‐-­‐minimize	
  -­‐-­‐verbose	
  !
#	
  Run	
  the	
  simulation	
  with	
  verbose	
  output:	
  
echo	
  "Running	
  simulation..."	
  
yank	
  run	
  -­‐-­‐store=output	
  -­‐-­‐verbose	
  !
#	
  Analyze	
  the	
  data	
  (can	
  be	
  done	
  asynchronously)	
  
echo	
  "Analyzing	
  data..."	
  
yank	
  analyze	
  -­‐-­‐store=output	
  !

Setting up a YANK calculation
Using the command-line:

Using the Python API:
from yank.yank import Yank !
# Initialize YANK object. 
yank = Yank(store_dir) !
# Set some options. 
options = dict() 
options['number_of_iterations'] = 1000 !
# Create reference thermodynamic state. 
from yank.repex import ThermodynamicState  
thermodynamic_state = ThermodynamicState(temperature=temperature, pressure=pressure) !
# Create new simulation. 
yank.create(phases, systems, positions, atom_indices, thermodynamic_state, options=options) !
# Run the simulation 
yank.create(phases, systems, positions, atom_indices, thermodynamic_state, options=options) !
# Analyze the simulation 
results = yank.analyze()



Additional binding sites can be identified and individual 
affinities estimated by Mixing in monte carlo moves

benzene bound to T4 lysozyme L99A 
AMBER96 + OBC GBSA

core site
surface sites

Chodera and Shirts. JCP 135:194110, 2011 
Wang, Chodera, Yang, and Shirts. JCAMD 27:989, 2013.

Fig. 5 Superimposed poses (100 each) at the experimental binding site for all three binders (1-methylpyrrole, benzene and p-xylene). For
1-methylpyrrole and benzene, configurational noise is limited, while p-xylene transitions between two different clusters during the simulation

Fig. 6 Correlation between ligand binding site occupation and
Val111 displacement for p-xylene and benzene. RMSD of the ligand
from the crystal structure with respect to the RMSD of Val111 from
the crystal structure (upper graphs) and the Val111 v dihedral angle
(C - Ca - Cb - Cc) (lower graphs) for p-xylene (left side, a and

c) and benzene (right side b and d). All calculations are of fully
interacting ligands. Val111 must move for p-xylene binding to occur,
either by a torsional angle rotation or by backbone motion, but
benzene only binds to the unbound crystallographic configuration of
Val111
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  if	
  isinstance(reference_force,	
  openmm.NonbondedForce):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  CustomNonbondedForce	
  will	
  handle	
  softcore	
  interactions	
  with	
  ligand.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  energy_expression	
  =	
  “4*epsilon*lambda*x*(x-­‐1.0);"	
  #	
  softcore	
  potential	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  energy_expression	
  +=	
  "x	
  =	
  1.0/(alpha*(1.0-­‐lambda)	
  +	
  (r/sigma)^6);"	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  energy_expression	
  +=	
  "epsilon	
  =	
  sqrt(epsilon1*epsilon2);”	
  #	
  Lorentz-­‐Berthelot	
  combining	
  rules	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  energy_expression	
  +=	
  "sigma	
  =	
  0.5*(sigma1	
  +	
  sigma2);”	
  #	
  Lorentz-­‐Berthelot	
  combining	
  rules	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  energy_expression	
  +=	
  "lambda	
  =	
  lambda1*lambda2;"	
  #	
  alchemical	
  combining	
  rule	
  !
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force	
  =	
  openmm.CustomNonbondedForce(energy_expression)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  alpha	
  =	
  0.5	
  #	
  softcore	
  parameter	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addGlobalParameter("alpha",	
  alpha);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addPerParticleParameter("sigma")	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addPerParticleParameter("epsilon")	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addPerParticleParameter("lambda");	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  particle_index	
  in	
  range(reference_force.getNumParticles()):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Retrieve	
  parameters.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [charge,	
  sigma,	
  epsilon]	
  =	
  reference_force.getParticleParameters(particle_index)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Alchemically	
  modify	
  parameters.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  particle_index	
  in	
  ligand_atoms:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addParticle([sigma,	
  epsilon,	
  vdw_lambda])	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  else:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addParticle([sigma,	
  epsilon,	
  1.0])	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  exception_index	
  in	
  range(reference_force.getNumExceptions()):	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  Retrieve	
  parameters.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [iatom,	
  jatom,	
  chargeprod,	
  sigma,	
  epsilon]	
  =	
  reference_force.getExceptionParameters(exception_index)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  All	
  exceptions	
  are	
  handled	
  by	
  NonbondedForce,	
  so	
  we	
  exclude	
  all	
  these	
  here.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.addExclusion(iatom,	
  jatom)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.setNonbondedMethod(	
  reference_force.getNonbondedMethod()	
  )	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  force.setCutoffDistance(	
  reference_force.getCutoffDistance()	
  )	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  system.addForce(force)	
  

custom openmm forces allow 
experimentation with alchemical definitions



M. R. Shirts*, D. L. Mobley*, J. D. Chodera, and V. S. Pande. "Accurate and efficient corrections for missing dispersion interactions in molecular simulations",  
J. Phys. Chem. B 111:13052-13063 (2007). 

9Å

25Å

Anisotropic long-range dispersion correction 
is required to eliminate systematic error in 

binding affinities in explicit solvent

Simulations in explicit solvent must be run with long-range dispersion correction to ensure 
results are not sensitive to choice of Lennard-Jones cutoff.
This correction assumes isotropic distribution of Lennard-Jones sites throughout system, 
but protein/water mixtures are not homogeneous and isotropic!

isotropic assumption holds isotropic assumption fails

Instead, we have to enlarge cutoff so that isotropic assumption holds

∆G
9Å

∆G∞ PLP + L

PLP + L

An explicit postprocessing step recomputes energies with large cutoff 
and estimates perturbation free energies using exponential reweighting.

isotropic assumption holds

Error can be as large as 3 kcal/mol, depending on number of ligand atoms

COMING SOON!



A major goal of yank: Quantify how sensitive 
binding affinities to various physical effects
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NVIDIA GTX-Titan ($1000)



obligatory hazard 
statement

YANK 0.7 is research software and still under active development! 
There is a suite of unit tests, but we have not yet verified every capability works as expected. 

Use at your own risk.



Ensembler 
Automated modeling and preparation for 

superfamily-scale simulations 
Daniel Parton, Sonya Hanson, Patrick Grinaway

Folding@home480-GPU cluster

TODO: models fade out at bottom and right edges of matrix (will need some extra space in the box)
Clustering pic (some vague depiction of clusters, with highlighted centroids)
Implicit solvent MD pic (protein with blue gradient circle, and arrow with F=ma)
Solvation pic (box of protein + solvent)
Explicit solvent MD pic (above pic, plus arrow with F=ma)

ALK
Human
2XB7

Reconstruction of missing loops

AKT1
Human
3CQU

SRC ABL All 90 
TKs

Template
s

4433 4433 398970

Models 4248 4250 382568

Unique 
models

4093 4247 378839

Refined 
models

4023 4241 373513

Ensembler stage Timing per 
template/model

Template 
reconstruction

Modeling

Implicit refinement

# models timings

398970

All TKs Src Abl

F=ma

F=ma

ABL
Human
1OPL

EGFR
Human

ALK
Human

SRC
Human

ABL
Mouse
1FPU

T
A
R
G
E
T

S
E
Q
U
E
N
C
E
S

Reconstruction of missing loops

TEMPLATE STRUCTURES

Alignment and comparative modeling

RMSD-based clustering to filter out non-unique models

Energy minimization & implicit solvent MD simulation

Solvation with explicit water

Explicit solvent MD simulation

AAK1
Human
4WSQ

ACVRL1
Human
3MY0

ACVR1
Human
3H9R

ADRBK1
Bovine
1OMW

•••

•••

Number of modelsNumber of modelsNumber of models Timing

All TKs SRC ABL

Timing

3h/template
(loop reconstruction)

412,269 4433 4433

397,621 4271 4431 89s/model
9863 CPU-h total

394,040 4135 4289 0.3s/model
32 CPU-h total

389,067 4066 4289 118s/model
12,418 GPU-h total

4003 4280 9s/model
947 CPU-h total

A.

B.

C.

D.

E.

F.

bioRxiv preprint: 
http://dx.doi.org/10.1101/018036



MODELING All 90 human tyrosine kinases 
onto all kinase catalytic domain pdbs

#!/bin/bash	
  !
conda	
  create	
  -­‐c	
  https://conda.binstar.org/omnia	
  -­‐n	
  ensembler1.0	
  python=2.7	
  ensembler=1.0	
  -­‐-­‐yes	
  
source	
  activate	
  ensembler1.0	
  !
ensembler	
  init	
  
ensembler	
  gather_targets	
  -­‐-­‐query	
  'family:"tyr	
  protein	
  kinase	
  family"	
  AND	
  organism:"homo	
  sapiens"	
  AND	
  reviewed:yes'	
  \	
  
	
  	
  	
  -­‐-­‐uniprot_domain	
  '^Protein	
  kinase(?!;	
  truncated)(?!;	
  inactive)'	
  
ensembler	
  gather_templates	
  -­‐-­‐gather_from	
  uniprot	
  -­‐-­‐query	
  'domain:"Protein	
  kinase"	
  AND	
  reviewed:yes'	
  \	
  
	
  	
  	
  -­‐-­‐uniprot_domain_regex	
  '^Protein	
  kinase(?!;	
  truncated)(?!;	
  inactive)'	
  
ensembler	
  loopmodel	
  
ensembler	
  align	
  
ensembler	
  build_models	
  
ensembler	
  cluster	
  
ensembler	
  refine_implicit	
  

90 human TKs
4433 PDB structures of 
kinase catalytic domains

x



$	
  conda	
  config	
  -­‐-­‐add	
  channels	
  http://conda.binstar.org/omnia	
  
$	
  conda	
  install	
  ensembler

bioRxiv preprint: 
http://dx.doi.org/10.1101/018036

�

FIG. �. Distribution of RMSDs to all TK catalytic domainmodels
relative to the model derived from the highest sequence iden-
tity template. Distributions are built from data from all �� TK tar-
gets. To better illustrate how conformational similarity depends
on sequence identity, the lower plot illustrates the distributions as
stratified into three sequence identity classes: high identity (��–
���%), moderate identity (��–��%), and remote identity (�–��%).
The plotted distributions have been smoothed using kernel den-
sity estimation.

of sequence identity on the conformational similarities of���

the resulting models, the RMSD distributions were strati-���

fied based on the three sequence identity categories de-���

scribed above. This analysis indicates that higher sequence���

identity templates result inmodelswith lower RMSDs, while���

templates with remote sequence identities result in larger���

RMSDs on average.���

We also analyzed the potential energies of the models���

at the end of the implicit solvent MD refinement stage.���

These ranged from -����� kT to -���� kT, with a median���

of -���� kT, mean of -���� kT, and a standard deviation���

of ���� kT (with a simulation temperature of ��� K). The���

distributions—stratified using the same sequence identity���

ranges as above—are plotted in Fig. �, indicating that higher���

sequence identity templates tend to result in slightly lower���

energy models. Of the 25,457 models which failed to com-���

plete the implicit refinement MD stage, all except � failed���

within the first � ps of simulation.���

FIG. �. Distribution of final energies from implicit solvent MD
refinement of TK catalytic domainmodels. To illustrate how the
energies are a�ected by sequence identity, the models are sepa-
rated into three sequence identity classes: high identity (��–���%),
moderate identity (��–��%), and remote identity (�–��%). The
plotted distributions have been smoothed using kernel density es-
timation. Refinement simulations were carried out at the default
temperature of ��� K.

Src and Abl����

To provide a more complete evaluation of the models���

generated,wehaveanalyzed twoexampleTKs (SrcandAbl�)���

in detail. Due to their importance in cancer, these kinases���

have been the subject of numerous studies, encompassing���

many di�erent methodologies. In terms of structural data,���

a large number of crystal structures have been solved (with���

or without ligands such as nucleotide substrate or inhibitor���

drugs), showing the kinases in a number of di�erent confor-���

mations. These two kinases are thus also interesting targets���

for MSM studies, with one recent study focusing on mod-���

eling the states which constitute the activation pathway of���

Src [��].���

Fig. � shows a superposition of a set of representative���

models of SrcandAbl�. Modelswere first stratified into three���

ranges, based on the structure of the sequence identity dis-���

tribution (Fig. �), then subjected to RMSD-based k-medoids���

clustering (using themsmbuilder clustering package [��]) to���

pick three representative models from each sequence iden-���

tity range. Each model is colored and given a transparency���

basedon the sequence identity between the target and tem-���

plate sequence. The figure gives an idea of the variance���

present in the generated models. High sequence identity���

models (in opaque blue) tend to be quite structurally sim-���

ilar, with some variation in loops or changes in domain ori-���

entation.���

The Abl� renderings in Fig. � indicate one high sequence���

identity model with a long unstructured region at one of���

the termini, which was unresolved in the original template���

structure. While such models are not necessarily incorrect���

or undesirable, it is important to be aware of the e�ects they���

may have on production simulations performed under peri-���
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onto all kinase catalytic domain pdbs �

FIG. �. Superposition of clustered models of Src and Abl�. Su-
perposed renderings of nine models each for Src and Abl�, giving
some indication the diversity of conformations generated by En-
sembler. The models for each target were divided into three se-
quence identity ranges (as in Fig. �), and RMSD-based k-medoids
clustering was performed (using the msmbuilder clustering pack-
age [��]) to select three clusters from each. The models shown are
the centroids of each cluster. Models are colored and given trans-
parency based on their sequence identity, so that high sequence
identity models are blue and opaque, while lower sequence iden-
tity models are transparent and red.

odic boundary conditions, as long unstructured termini can���

be prone to interact with a protein’s periodic image. Lower���

sequence identity models (in transparent white or red) in-���

dicate much greater variation in all parts of the structure.���

We believe the mix of high and low sequence identity mod-���

els to be particularly useful for methods such as MSM build-���

ing, which require thorough sampling of the conformational���

landscape. The high sequence identity models could be���

considered to be themost likely to accurately represent true���

metastable states. Conversely, the lower sequence identity���

models could be expected to help push a simulation into re-���

gions of conformation space which might take intractably���

long to reach if starting a single metastable conformation.���

Toevaluate themodelsofSrcandAbl� in thecontextof the���

published structural biology literature on functionally rele-���

vant conformations, we have focused on two residue pair���

distances thought to be important for the regulation of pro-���

tein kinase domain activity. We use the residue numbering���

schemes for chicken Src (which is commonly used in the lit-���

erature even in reference to human Src) [��, ��] and human���

Abl� isoform A [��–��] respectively; the exact numbering���

schemes are provided in Supporting Information S�.���

Fig. � shows two structures of Src believed to repre-���

sent inactive (PDB code: �SRC) [��] and active (PDB code:���

�Y��) [��] states. One notable feature which distinguishes���

the two structures is the transfer of an electrostatic interac-���

tion of E��� from R��� (in the inactive state) to K��� (in the���

active state), brought about by a rotation of the ↵C-helix.���

These three residues are also well conserved [��], and a���

number of experimental and simulation studies have sug-���

gested that this electrostatic switching process plays a role���

in a regulatorymechanism shared across the protein kinase���

family [��, ��, ��]. As such, we have projected the Ensem-���

blermodels for Src and Abl� onto a space consisting of the���

distancesbetween these two residuepairs (Fig.�). Themod-���

FIG. �. Two structures of Src, indicating certain residues in-
volved in activation. In the inactive state, E��� forms a salt bridge
with R���. During activation, the ↵C-helix (green) moves and ro-
tates, orienting E��� towards the ATP-binding site and allowing it
to instead form a salt bridge with K���. This positions K��� in the
appropriate position for catalysis.

conda config -add channels https://conda.binstar.org/omnia

conda install ensembler

Box �. Ensembler installation using conda.

els show strong coverage of regions in which either of the���

electrostatic interactions is fully formed (for models across���

all levels of target-template sequence identity), as well as a���

wide range of regions inbetween (mainly models with low���

sequence identity). We thus expect that such a set of mod-���

els, if used as starting configurations for highly parallel MD���

simulation, could greatly aid in sampling of functionally rel-���

evant conformational states.���

IV. AVAILABILITY AND FUTURE DIRECTIONS���

Availability���

The code for Ensembler is hosted on the collabora-���

tive open source so�ware development platform GitHub���

(github.com/choderalab/ensembler). The latest release can���

be installed via the conda package manager for Python���

(conda.pydata.org), using the two commands shown in���

Box �. This will install all dependencies except for Mod-���

eller andRosetta,whicharenotavailable through theconda���

packagemanager, and thus must be installed separately by���

the user. The latest source can be downloaded from the���

GitHub repository, which also contains up-to-date instruc-���

tions for building and installing the code. Documentation���

can be found at ensembler.readthedocs.org.���
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(a) Src (b) Abl

FIG. �. Src and Abl�models projected onto the distances between two conserved residue pairs, colored by sequence identity. Two
Src structures (PDB entries �Y�� [��] and �SRC [��]) are projected onto the plots for reference, representing active and inactive states
respectively. These structures and the residue pairs analyzed here are depicted in Fig. �. Distances are measured between the center of
masses of the three terminal sidechain heavy atoms of each residue. The atom names for these atoms, according to the PDB coordinate
files forboth reference structures, are—Lys: NZ,CD,CE (ethylamine); Glu: OE�, CD,OE� (carboxylate); Arg: NH�, CZ,NH� (part of guanidine).

Future Directions���

Comparative proteinmodeling and MD simulation set-up���

can be approached in a number of di�erentways, with vary-���

ing degrees of complexity, and there are a number of obvi-���

ous additions and improvements which we plan to imple-���

ment in future versions of Ensembler.���

Some amino acids can exist in di�erent protonation���

states, depending on pH and on their local environment.���

These protonation states can have important e�ects on bi-���

ological processes. For example, long timescale MD simula-���

tions have suggested that the conformation of the DFGmo-���

tif of the TK Abl�—believed to be an important regulatory���

mechanism [��]—is controlled by protonation of the aspar-���

tate [��]. Currently, protonation states are assigned simply���

based on pH (a user-controllable parameter). At neutral pH,���

histidines have two protonation states which are approxi-���

mately equally likely, and in this situation the selection is���

therefore made based on which state results in a better hy-���

drogen bond. It would be highly desirable to instead use a���

methodwhich assigns amino acid protonation states based���

on a rigorous assessment of the local environment. We thus���

plan to implement an interface and command-line function���

for assigning protonation states with MCCE� [��–��], which���

uses electrostatics calculations combinedwith Monte Carlo���

sampling of side chain conformers to calculate pKa values.���

Many proteins require the presence of various types of���

non-protein atoms andmolecules for proper function, such���

as metal ions (e.g. Mg+2), cofactors (e.g. ATP) or post-���

translational modifications (e.g. phosphorylation, methyla-���

tion, glycosylation, etc.), and we thus plan for Ensembler���

to eventually have the capability to include such entities���

in the generated models. Binding sites for metal ions are���

frequently found in proteins, o�en playing a role in cataly-���

sis. For example, protein kinase domains contain two bind-���

ing sites for divalentmetal cations, and display significantly���

increased activity in the presence of Mg2+ [��], the diva-���

lent cation with highest concentration in mammalian cells.���

Metal ions are o�en not resolved in experimental structures���

of proteins, but by taking into account the full range of avail-���

able structural data, it should be possible in many cases���

to include metal ions based on the structures of homolo-���

gous proteins. We are careful to point out, however, that���

metal ion parameters in classical MD force fields have signif-���

icant limitations, particularly in their interactions with pro-���

teins [��]. Cofactors and post-translational modifications���

are also o�en not fully resolved in experimental structures,���

and endogenous cofactors are frequently substituted with���

other molecules to facilitate experimental structural anal-���

ysis. Again, Ensembler could exploit structural data from���

a set of homologous proteins to model in these molecules,���

although there will be likely be a number of challenges to���

overcome in the design and implementation of such func-���

tionality.���

Another limitationwith the present version ofEnsembler���

involves the treatment of members of a protein family with���

especially long residue insertions or deletions. For example,���

the setof all humanproteinkinasedomains listed inUniProt���

have a median length of ��� residues (mean ���) and a���

standard deviation of ��, yet the minimum and maximum���
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