Automated ligand design

We have developed an enhanced sampling approach that allows us to explore combinatorially large spaces of inhibitor designs in a way that automatically biases the simulation toward inhibitors with higher affinity for one or more targets. This approach---based on expanded ensemble simulations and made possible by a new nonequilibrium Monte Carlo algorithm we developed---promises to provide a time- and cost-effective solution to the problem of optimizing small molecules for affinity. By restricting the space of compounds to those accessible from a given set of commercially-available starting materials and a library of common synthetic transformations, we aim to propose a set of compounds that have a high likelihood of increased potency and are likely to be readily synthesizable.

Read More

Design of small molecule allosteric modulators

Ras family proteins, important in the control of cell growth via signaling, are commonly mutated in human cancer. Activating mutations in Ras are a leading cause of resistance to modern targeted therapy, and patients who harbor Ras mutations have considerably poorer prognoses than those with wild type Ras. Targeting Ras has proven difficult because oncogenic mutations activate Ras primarily by ablating enzymatic activity, leaving classical enzyme inhibition strategies unworkable. The high affinity of Ras for GTP---which locks Ras in an active conformation---combined with high intracellular GTP concentrations makes outcompeting the bound nucleotide extremely difficult.

Read More