The Open Force Field Evaluator: An automated, efficient, and scalable framework for the estimation of physical properties from molecular simulation

Simon Boothroyd, Lee-Ping Wang, David L. Mobley, John D. Chodera, and Michael R. Shirts

Preprint ahead of submission: [ChemRxiv]

We describe a new software framework for automated evaluation of physical properties for the benchmarking and optimization of small molecule force fields according to best practices.

Binding thermodynamics of host-guest systems with SMIRNOFF99Frosst 1.0.5 from the Open Force Field Initiative

David R. Slochower, Neil M. Hendriksen, Lee-Ping Wang, John D. Chodera, David L. Mobley, and Michael K. Gilson.
Journal of Chemical Theory and Computation ASAP. [DOI] [bioRxiv] [GitHub]

We assess the accuracy of the SMIRNOFF99Frosst 1.0.5 force field in reproducing host-guest binding thermodynamics in comparison with the GAFF force field, demonstrating how the SMIRNOFF format for compactly specifying force fields provide comparable accuracy with 20x fewer parameters.

Toward learned chemical perception of force field typing rules

Camila Zanette, Caitlin C. Bannan, Christopher I. Bayly, Josh Fass, Michael K. Gilson, Michael R. Shirts, John Chodera, and David L. Mobley
Journal of Chemical Theory and Computation, 15:402, 2019. [DOI] [ChemRxiv] [GitHub]

We show how machine learning can learn typing rules for molecular mechanics force fields within a Bayesian statistical framework.