Spatial attention kinetic network with E(n) equivariance

Yuanqing Wang and John D. Chodera
preprint: [arXiv] [code]

This work descibes Spatial Attention Kinetic Networks (SAKE), a new E(n)-equivariant architecture that uses spatial attention, enabling the construction of extremely performant but still accurate machine learning potentials, as well as flows capable of prediction dynamics.

End-to-end differentiable molecular mechanics force field construction

Yuanqing Wang, Josh Fass, and John D. Chodera
Chemical Science 13:12016, 2022 [DOI] [arXiv] [pytorch code] [JAX code]

Molecular mechanics force fields have been a workhorse for computational chemistry and drug discovery. Here, we propose a new approach to force field parameterization in which graph convolutional networks are used to perceive chemical environments and assign molecular mechanics (MM) force field parameters. The entire process of chemical perception and parameter assignment is differentiable end-to-end with respect to model parameters, allowing new force fields to be easily constructed from MM or QM force fields, extended, and applied to arbitrary biomolecules.

Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems

Gkeka P, Stoltz G, Farimani AB, Belkacemi Z, Ceriotti M, Chodera JD, Dinner AR, Ferguson A, Maillet JB, Minoux H, Peter C, Pietrucci F, Silveira A, Tkatchenko A, Trstanova Z, Wiewiora R, Leliévre T.
Journal of Chemical Theory and Computation 60:6211, 2020. [DOI] [arXiv]

We review the state of the art in applying machine learning to coarse grain force fields in space and time to study mutliscale dynamics.