GCN2 kinase activation by ATP-competitive kinase inhibitors

Mellinghoff I, Tang CP, Clark O, Ferrarone J, Campos C, Lalani AS, Chodera JD, Intlekofer AM, and Elemento O
Nature Chemical Biology}, 18:207, 2022 [DOI]

We describe paradoxical activation of GCN2 kinase activity by the kinase inhibitor neratinib, and propose a model for how inhibitor-induced dimerization might cause this unusual activity.

Is structure based drug design ready for selectivity optimization?

Steven K. Albanese, John D. Chodera, Andrea Volkamer, Simon Keng, Robert Abel, and Lingle Wang
Journal of Chemical Informatics and Modeling [DOI] [bioRxiv] [GitHub]

We asked whether the similarity of binding sites in related kinases might result in a fortuitous cancellation of errors in using alchemical free energy calculations to predict kinase inhibitor selectivities. Surprisingly, we find that even distantly related kinases have sufficient correlation in their errors that predicting changes in selectivity can be much more accurate than predicting changes in potency due to this effect, and show how this could lead to large reductions in the number of molecules that must be synthesized to achieve a desired selectivity goal.

A water-mediated allosteric network governs activation of Aurora kinase A

Cyphers S, Ruff E, Behr JM, Chodera JD, and Levinson NM.
Nature Chemical Biology 13:402, 2017. [DOI] [PDF] [GitHub]

Over 50 microseconds of aggregate simulation data on Folding@home reveal a surprisingly stable hydrogen bond network underlies allosteric activation by Tpx2.

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin

Xu Jianing, Pham CG, Albanese SK, Dong Yiyu, Oyama T, Lee CH, Rodrik-Outmezguine V, Yao Z, Han S, Chen D, Parton DL, Chodera JD, Rosen N, Cheng EH, and Hsieh J. Journal of Clinical Investigation 126:3526, 2016. [DOI] [PDF]

In work with the James Hsieh lab at MSKCC, we examine the surprising origin of how different clinically-identified cancer-associated mutations in MTOR activate the kinase through distinct mechanisms.