Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

Kyle A. Beauchamp, Julie M. Behr, Ariën S. Rustenburg, Christopher I. Bayly, Kenneth Kroenlein, and John D. Chodera.
J. Phys. Chem. B 119:12912, 2015. [DOI] [PDF] // code: [GitHub] // preprint: [arXiv

Progress in forcefield validation and parameterization has been hindered by the availability of high-quality machine-readable physical property data for small organic molecules. We show how the NIST ThermoML dataset provides a solution to this problem, and demonstrate its utility in benchmarking the GAFF/AM1-BCC small molecule forcefield on neat liquid densities and static dielectric constants to uncover problems in the representation of low-dielectric environments.

A robust approach to estimating rates from time-correlation functions

John D. ChoderaPhillip J. ElmsWilliam C. SwopeJan-Hendrik PrinzSusan MarquseeCarlos BustamanteFrank NoéVijay S. Pande
Preprint ahead of submission: [arXiv] [PDF] [SI]

The estimation of rates from experimental single-molecule data is fraught with peril. We describe some of the failures of existing methods and suggest a robust way to estimate rates from time-correlation functions.