The dynamic conformational landscapes of the protein methyltransferase SETD8


Rafal P. Wiewiora*, Shi Chen*, Fanwang Meng, Nicolas Babault, Anqi Ma, Wenyu Yu, Kun Qian, Hao Hu, Hua Zou, Junyi Wang, Shijie Fan, Gil Blum, Fabio Pittella-Silva, Kyle A. Beauchamp, Wolfram Tempel, Hualing Jiang, Kaixian Chen, Robert Skene, Y. George Zheng, Peter J. Brown, Jian Jin, John D. Chodera+, and Minkui Luo+.
Submitted. [bioRxiv] 
* These authors contributed equally to this work
+ Co-corresponding authors

In this work, we show how targeted X-ray crystallography using covalent inhibitors and depletion of native ligands to reveal structures of low-population hidden conformations can be combined with massively distributed molecular simulation to resolve the functional dynamic landscape of the protein methyltransferase SETD8 in unprecedented atomistic detail. Using an aggregate of six milliseconds of fully atomistic simulation from Folding@home, we use Markov state models to illuminate the conformational dynamics of this important epigenetic protein.

An open library of human kinase domain constructs for automated bacterial expression


Steven K. Albanese*, Daniel L. Parton*, Mehtap Isik**, Lucelenie Rodríguez-Laureano**, Sonya M. Hanson,  Julie M. Behr, Scott Gradia, Chris Jeans, Nicholas M. Levinson, Markus A. Seeliger, and John D. Chodera.
* co-first author; ** co-second author
Biochemistry 57:4675, 2018. [DOI] [bioRxiv]
Interactive data browser: []
Plasmids available via AddGene

Human kinase catalytic domains---the therapeutic target of selective kinase inhibitors used in the treatment of cancer and other diseases---are notoriously difficult and expensive to express in insect or human cells. Here, we utilize the phosphatase co-expression technology developed by Markus Seeliger (now at Stony Brook) to develop a library of human kinase catalytic domains for facile and inexpensive expression in bacteria.

Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy calculations

Kevin Hauser, Christopher Negron, Steven K. Albanese, Soumya Ray, Thomas Steinbrecher, Robert Abel, John D. Chodera, and Lingle Wang.
Communications Biology 1:70, 2018 [DOI] [input files and analysis scripts]

In our first collaborative paper with Schrödinger, we present the first comprehensive benchmark assessing the ability for alchemical free energy calculations to predict clinical mutational resistance or susceptibility to targeted kinase inhibitors using the well-studied kinase Abl, the target of therapy for chronic myelogenous leukemia (CML).

Quantifying configuration-sampling error in Langevin simulations of complex molecular systems


Josh Fass, David Sivak , Gavin E. Crooks, Kyle A. Beauchamp, Benedict Leimkuhler, and John Chodera.
Entropy 20:318, 2018. [DOI] [GitHub] [bioRxiv preprint]

Molecular dynamics simulations necessarily use a finite timestep, which introduces error or bias in the sampled configuration space density that grows rapidly with increasing timestep. For the first time, we show how to compute a natural measure of this error---the KL divergence---in both phase and configuration space for a widely used family of Langevin integrators, and show that VRORV is generally superior for simulation of molecular systems.

A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation

Emily F. Ruff, Joseph M. Muretta, Andrew Thompson, Eric W. Lake, Soreen Cyphers, Steven K. Albanese, Sonya M. Hanson, Julie M. Behr, David D. Thomas,  John D. Chodera, and Nicholas M. Levinson. 
eLife 7:e32766, 2018. [DOI] [bioRxiv]

We show that, contrary to the canonical belief that activation shifts DFG-out to DFG-in populations, phosphorylation of AurA does not shift DFG-in/out equilibrium but instead remodels the conformational distribution of the DFG-in state.

Quantitative self-assembly prediction yields targeted nanomedicines

Yosi ShamayJanki Shah, Mehtap Işık, Aviram MizrachiJosef LeiboldDarjus F. TschaharganehDaniel RoxburyJanuka Budhathoki-UpretyKarla NawalyJames L. SugarmanEmily BautMichelle R. NeimanMegan DacekKripa S. GaneshDarren C. JohnsonRamya SridharanKaren L. ChuVinagolu K. RajasekharScott W. Lowe, John D. Chodera, and Daniel A. Heller. 
Nature Materials 17:361, 2018. [DOI] [PDF] [Supporting Info] [nano-drugbank]

In a collaboration with the Heller Lab at MSKCC, we show how indocyanine nanoparticles can package insoluble selective kinase inhibitors with high mass loadings and efficiently deliver them to tumors.

Biomolecular simulations under realistic macroscopic salt conditions

Gregory A. Ross, Ariën S. Rustenburg, Patrick B. Grinaway, Josh Fass, and John D. Chodera
Journal of Physical Chemistry B 122:5466, 2018. [DOI] [bioRxiv] [simulation code] [results and analysis scripts]

We show how NCMC can be used to implement an efficient osmostat in molecular dynamics simulations to model realistic fluctuations in ion environments around biomolecules, and illustrate how the local salt environment around biological macromolecules can differ substantially from bulk.

Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes Using Nonequilibrium Candidate Monte Carlo

Samuel Gill, Nathan M. Lim, Patrick Grinaway, Ariën S. Rustenburg, Josh Fass, Gregory Ross, John D. Chodera, and David Mobley.
Journal of Physical Chemistry B 22:5579, 2018. [DOI] [ChemRxiv] [GitHub]

Nonequilibrium candidate Monte Carlo can be used to accelerate the sampling of ligand binding modes by orders of magnitude over instantaneous Monte Carlo.

OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, Vijay S. Pande. PLoS Computational Biology 13:e1005659, 2017. [DOI] [bioRxiv] [website] [GitHub]

We describe the latest version of OpenMM, a GPU-accelerated framework for high performance molecular simulation applications.

Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the FreeSolv database

Guilherme Duarte Ramos Matos, Daisy Y. Kyu, Hannes H. Loeffler, John D. Chodera, Michael R. Shirts, David Mobley
Journal of Chemical Engineering Data 62:1559, 2017. [DOI] [bioRxiv] [GitHub]

We review alchemical methods for computing solvation free energies and present an update (version 0.5) to the FreeSolv database of experimental and calculated hydration free energies of neutral compounds.

L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH

Intlekofer A, Wang B, Liu H, Shah H, Carmona-Fontaine C, Rustenburg AS, Salah S, Gunner MR, Chodera JD, Cross JR, and Thompson CB.
Nature Chemical Biology 13:494, 2017. [DOI] [PDF] [GitHub]

At low pH, metabolic enzymes lactate dehydrogenase and malate dehydrogenase undergo shifts in substrate utilization that have high relevance to cancer metabolism due to surprisingly simple protonation state effects.

A water-mediated allosteric network governs activation of Aurora kinase A

Cyphers S, Ruff E, Behr JM, Chodera JD, and Levinson NM.
Nature Chemical Biology 13:402, 2017. [DOI] [PDF] [GitHub]

Over 50 microseconds of aggregate simulation data on Folding@home reveal a surprisingly stable hydrogen bond network underlies allosteric activation by Tpx2.

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin

Xu Jianing, Pham CG, Albanese SK, Dong Yiyu, Oyama T, Lee CH, Rodrik-Outmezguine V, Yao Z, Han S, Chen D, Parton DL, Chodera JD, Rosen N, Cheng EH, and Hsieh J. Journal of Clinical Investigation 126:3526, 2016. [DOI] [PDF]

In work with the James Hsieh lab at MSKCC, we examine the surprising origin of how different clinically-identified cancer-associated mutations in MTOR activate the kinase through distinct mechanisms.

Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge

Ariën S. Rustenburg, Justin Dancer, Baiwei Lin, Jianweng A. Feng, Daniel F. Ortwine, David L. Mobley, and John D. Chodera.
Journal of Computer-Aided Molecular Design 30:945, 2016. [DOI] [bioRxiv] [PDF] // data: [GitHub]
Solicited manuscript for special issue of the Journal of Computer Aided Molecular Design on the SAMPL5 Challenge.

The SAMPL Challenges have driven predictive physical modeling for ligand:protein binding forward by focusing the community on a series of blind challenges that evaluate performance on blind datasets, focus attention on current challenges for physical modeling techniques, and provide high-quality experimental datasets to the community after the challenge is over. For many years, challenges focused around hydration free energies have proven to be extremely useful, with theory now able to determine when experiment is wrong. To replace these challenges, since no more hydration free energy data is being measured, we proposed to use the partition or distribution coefficients of small druglike molecules between aqueous and apolar phases. We report the collection of cyclohexane-water partition data for a set of compounds used to drive the SAMPL5 distribution coefficient challenge, providing the experimental data, methodology, and insight for future iterations of this challenge.